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Abstract. Ina recently published paper [3 ], the elements of the

Jacobson radical of a ring of row-finite matrices over an arbitrary

ring R are characterized as those matrices with entries in the

Jacobson radical of R which have a vanishing set of column ideals.

In this paper, the characterization is extended to include the

endomorphism ring of an arbitrary projective module. In the pro-

cess we offer a greatly simplified proof of the theorem for row-finite

matrices.

Throughout A will be an associative ring, and A an infinite index

set which we will assume to be well-ordered by the ordinals, A =

{1,2, ••• }.
For a ring A, we will let A' denote the ring obtained from A by

adjoining an identity element in the customary manner, and /(A)

will denote the Jacobson radical of A.

Recall that for A a ring with 1, a left A-module P is projective ii

given any homomorphism f:P—>N and any surjection g:M—>N of

left A-modules there exists a homomorphism h:P—>M with f=h o g.

It is well known [2, p. 86] that P is projective if and only if there

exist elements |xx[XGA}çP and homomorphisms {/x|X€EA}

ÇHomfi(P, A) with x = X)xsa (x/\)xx for each x£P (the sum having

but finitely many nonzero terms). We will call such a family

{(xx, /x) | X£A} a projective coordinate system for P. We need one more

definition before we can state our main theorem.

A set of left ideals {.4x| X£A J of a ring A is called a vanishing set of

left ideals if given any sequence ai, at, ■ ■ ■ with a<G^4x, for distinct

Xi in A, there exists an integer « for which aia2 ■ ■ • a„ = 0.

Theorem 1. Let P be a projective left R-module, R a ring with 1, and

let <pEE = HomRiP, P), endomorphisms acting on the right. Then the

following conditions are equivalent.

ii) d>EJiE).

(ii)  There exists an infinite projective coordinate system { (xx, /x) | X
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£A} for P with  {P0/x|X£A} forming a vanishing set of left ideals

contained in J(R).

(iii) Given any infinite projective coordinate system {(x\, /x)|X£AJ

for P with P<pf\QJ(R) for each X, the set {P(pf\\X£A} forms a vanish-
ing set of left ideals.

The hypothesis that the projective coordinate system be infinite

is no real restriction, and is only made to include finitely generated

projectives in the theorem. For if {(xi,fi)\i = l, 2, • ■ • ,«} is a finite

projective coordinate system for P, we can expand trivially to an in-

finite projective coordinate system by taking Xj arbitrary for i>n

and defining/, = 0 for i > n. The vanishing condition is then vacuously

satisfied. We therefore have that <££ J(E) if and only if for i = 1, ■ • • ,

n, P<t>fiQJ(R). This is just a restatement of the fact that J(E)

= HomR(P, J(P)) for P a finitely generated projective.

Before we begin the proof of the theorem, we develop some lemmas

which enable us to avoid some tedious matrix computations.

A submodule N of an i?-module M is called small if whenever Mi is

a submodule with N-\-Mi = M, then already Mi = M. There is a char-

acterization of the Jacobson radical of the endomorphism ring of a

projective in terms of small submodules.

Lemma 1. Let Rbea ring with 1, P a (quasi-) projective left R-module,

E = Horns (P, P). Then J(E) = {0£E| P<p is a small submodule of P\.

Proof. Set T= {</>££[ P<£ is a small submodule of P} ; it is clear

that T is a left (in fact, two-sided) ideal of E. Given an arbitrary ele-

ment <pET, P=P<p+P(l-<p). Since P<¡> is small in T, P = P(\-<¡>),

so 1 —<f> is a surjection. Since P is projective, there is a homomorphism

\p:P—*P with ^(1 —<f>) = 1. This shows that 0 has a left quasi-inverse.

Since 4> was an arbitrary element of the left ideal T, TÇ.J(E).

For the reverse inclusion, let <p(E.J(E) and suppose that P<p + Q = P

for some submodule Q of P. Let it be the natural map of P onto P/Q.

Since P<f> + Q = P, P<pir = P/Q. Since P is projective, <pw lifts to a

homomorphism ^:P—>P such that \p<f>ir =ir. Thus P(l —^<p) Ç.Q. But

<pEJ(E) implies that 1 — \p<j> is an automorphism of P, and it follows

that P = P(\ -yp<p) = Q. This proves that J(E) Ç. T.    Q.E.D.

Lemma 2. Let R, P, E be as in Lemma 1. Then J(E) ÇHoms(P, J(P))

where J(P) is the intersection of the maximal submodules of P. Conse-

quently, given <pEJ(E) andf&AomR(P, R), P<j>fQJ(R).

Proof. Suppose that </>£/(£), and let M be any maximal sub-

module of P. Then either P<pQM or M+P<p = P. The latter possibil-
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ity cannot occur, because P<p is a small submodule of P by Lemma 1,

which implies that M = P. M being an arbitrary maximal submodule

of P, P<pQJiP) proving the first assertion.

The second assertion is an immediate consequence of the basic

isomorphism theorems: P<bfÇ.C] (maximal left ideals of A)=/(A)

for any/GHomÄ(P, A).    Q.E.D.
It is known that J(P) = /(A)P; and that J(£)=HomÄ(P, /(P))

for P finitely generated. But we will not need these facts here.

We will now prove the theorem by showing that (i) implies (iii),

and is in turn implied by (ii).

(ii) implies (i). Suppose {(xx, /x)|X£A} is a projective coordinate

system for P, and with {P0/x|X£A} a vanishing set of left ideals of

A contained in /(A). For convenience set A\—P<bf\, X£A. For each

xEP, x<b = Sxsa (x0)/xXxG Xxsa .4xxx. Thus P<bQ J^xea A\X\.
We will be done if we can prove that T^xea ^4xXx is a small sub-

module of P; for then, a fortiori, P<p is a small submodule of P, and

so by Lemma 1, (pEJiE). Let us therefore assume that Q is a sub-

module of P with ^>Z\ea A\X\ + Q = P; our task is to prove that

then Q = P.
Let x be an arbitrary element of P. Set x = xJtQEP/Q, X\ = x\

+ QEP/Q for each X£A. We can write

(1) x =    X  «Xf&l
*j6Ai

where Ai is a finite subset of A and O^cx^^x, for each Xi£Ai. Next,

for each Xi£Ai we can write

(2) xXl =   2 cxjXx,

where A2 is a finite subset of A (depending on the choice of Xi) and

0^C\tEA\2 for each X2GA2. (The reader will note that we are avoid-

ing some additional subscripting here. With this word of caution, no

confusion should arise.)

We claim that we can assume that given Xi£Ai, Xi£A2. For one can

use (2) to write xx, = cXlxxi + 2*s*m,x,ea, cmx\¡ with cXlE^4xl£-/(A).

Then   (1 — Cx,)xXl= ^x^umsa, Cx,xx„  so  multiplying  by  (1 — cxj-1,

(3) xXl =        2J      cx2xx2, cxs E A\,.
X2EA2;X2?íXi

Replacing equation (2) by equation (3) establishes the claim.

Thus x= ^Cx^xjXx, with each nonzero pair Cx„ ex, coming from

distinct A\{. Inductively, one can prove that for each integer »êl,
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x = 52 cXicx2 • • • C\„xx„ with each nonzero «-tuple of coefficients

Cxi, Cx„ • • • , c\„ coming from distinct AXi.

If xp^O, then we have for each integer n^i such a product

C\¡C\, ■ ■ ■ Cxn^O (possibly distinct products for different n). But then

by the König Graph Theorem, there would exist a sequence of ele-

ments Cxj, cx„ cx3, • • • with \iPé\f for i-Aj and CxxCx2 • ■ • Cx^O for

every n. This would violate the hypothesis that {^4x|X£A} is a van-

ishing set of left ideals. Hence x = 0, and x being an arbitrary element

of P it follows that Q = P, completing the proof that (ii) implies (i).

(i) implies (iii). Suppose <f>£/(P), and let {(xx,/x)|X£A} be any

projective coordinate system for P. For each X£A, we again set

A\ = P<pf\. We note that by Lemma 2 each A\QJ(R). We have to

prove that {^4x|X£A} is a vanishing set of left ideals of R.

Let a sequence CiÇzA\u c2£.<4x2, • • • be given with the X¿ distinct

elements of A. Without loss of generality we can assume that

\i = i, i = \, 2, 3, • • • . Write Ci = pi(pfi, i = l, 2, 3, ■ ■ ■ , where the

piGP.
We define a (free) P-module F as follows. Set P=52xsa©Px,

where each R\=R; write the elements of F as T^xsa r\e\, where ex is

the element of F with 1 in the Xth coordinate, 0 elsewhere. There is

an embedding i of P into F defined by xi = 52xea (x/x)ex- More-

over there is a homomorphism ß\F—*P defined by (T^xka ne\)ß

= 52xsa rx£x, with the property that i o ß is the identity map on P.

It follows that F = Pi©ker ß. We can now extend <j> to an endo-

morphism <f>' of F: given y£P, write y = xi-\-z where x£P and

z£ker ß, and define y<j>' = x<pi. Note that F<p' = P<pi. We also

compute (pi<¡>)i = clei+ 52xs2 (Pi<t>f\)e\, and in general, (£¡r¿)i = c¿e¿

+ 52x*< (Pi4>f\)e\.
Choose a sequence «i, ni, n3, ■ ■ ■ of positive integers as follows.

Take «i = l, and for £2:1 and nk having been chosen, inductively

select «i+i>«i so that pnk<t>ff = Q for all integers/^nk+i. This selection

is possible because the sum 52 ^x is direct.

Let ri, ri, r3, ■ ■ ■ be an arbitrary sequence of elements of R.

Define i/'£HomB(P F) via

52 *xex £ F,     (52 sxex)^ - 52 ¿x£x,

where for each positive integer/je 2, í3=5„J_1ry_i, and ¿x = 0 otherwise.

For any integer &S; 1, we compute

Pnii<t>'^ =   52 (Pnk4>fn,)riei+i + Cn/iei+i  =   52 ^¿'"«e.+l + C„tr,te/fc+i,
1=1 1=1

where ski = pnt<j>fniGJ(R)-



I970] JACOBSON RADICAL OF THE ENDOMORPHISM RING 19

Now since P<pi is a small submodule of Pi, F<p' = P<pi is a small

submodule of F, and hence ^ty G/(Horn« (A, F)). It follows that Fcp'xp

is a small submodule of F. Let G= 2*°=i A(e4 — cnkrkek+i) + ^xa« Aex-

We claim that F<p'\f% + G= F. For, ei = cnirie2+iei—cnirie2)=pnii<p'\[/

+ iei-cn¡rie2)EF<b'Tp+G, so dEF^+G. Next, (l+s2iri)e2

= (s2irie2-r-cB/2e3) + («2 —c„/2e3) = pn1i4>'\l/ + ie2 — c„ír2e3) E Fcp'\p-\-G; and

since 52iri£-f(A) it follows that e2EF<p'\p+G. Inductively, one can

perform a similar calculation to prove that ekEF<p'\p-T-G for each

positive integer k. Since by definition G contains all other e\ we have

F<p'\p-t-G = F. Fcpty being a small submodule of F, we conclude

that G = F.

Thus we can write ei in terms of the generators of G,

k

ei = X/z;(e,- - c„,r,ei+i) + ]£ èxCx

with each 0,, ôx G A. Comparing coefficients, we see that each 6x = 0,

ai = l, a2 = cn]ri = Ciri, a3 = a2c„2r2 = CiriCn2r2, • • • , o*=o*_iC„k_Iri_1 =

CiriC„/2 ■ • • e«*./*-!, and finally 0 = akcnkrk = WiC», ■ ■ ■ cnkrk. For

1 ̂ i^k — i, select r¿ = c„i+1 • • • c„i+1_i if w,-fl<w<+i, and r¿=l other-

wise; and choose r* = l. Then CiC2c3 • • • c„t = 0, and this completes the

proof of the theorem.

Row-finite matrices. Given a ring A, we let Rf denote the ring of

AXA row-finite matrices over A; A* will denote the ring of AXA

row-finite matrices over R*. It is convenient to regard A/ as a ring of

endomorphisms, acting on the right, of a free left A#-module P with

basis {Xx IX G A}. This is possible by identifying RfQRf = HomÄ* (P, P) ;
and for A = («„„)„,„saGA/, and any mGA, xßA = ^,en aß,x„ the sum

having but finitely many nonzero terms. We define the Xth column

left ideal of A to be the left ideal of A generated by {a„x| mGA }. The

following theorem was proved in [3], and is now an immediate

corollary of Theorem 1.

Theorem 2. In order that A = (a,»),,o£Ä/ be an element of /(A/),

it is necessary and sufficient that each a^EJiR) and the column left

ideals of A be a vanishing set of left ideals.

Proof. First assume that R=R*, and regard A as an element of

Homfi(P, P). For each XGA, define f\ G HomB(P, A) to be the natural

projection homomorphism defined by (J^xea rxxx)/x = rx. Then of

course {(xx,/x)|XGA} is a projective coordinate system for P.

Hence by Theorem 1, AEJiRj) if and only if {P.4/x|XGA} is a

vanishing set of left ideals contained in /(A). But
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?Ah - (   Z &*» ) 4/x =  (   52   *V*« )/x =  52 Ä»*,

which is just the Xth column left ideal of A. This proves the theorem

for rings with an identity element. For arbitrary rings the proof is

completed by the following observation.

Lemma 3. J(Rf)=J(RJ).

Proof. We can apply Theorem 2 to R$ to learn in particular that

J(Rf)QJ(R*)f. (This is also easy to show directly.) So J(RJ) QJ(R*)f

= J(R)fCLRf. Also by viewing R/ as a two-sided ideal of Rf, we have

J(Rf)=RfrM(Rf). But J(Rf)QRf, so J(Rf) =Rfnj(R*) = J(Rf).
Q.E.D.

Some concluding remarks are in order. The proof that (ii) implies

(i) in Theorem 1 used a construction due to Bass [l, pp. 473-474].

The proof of the converse, while straightforward, is unsatisfactory

in that one is forced to go outside the projective module to an asso-

ciated free module. This should not be necessary.

The authors would like to thank Professor S. A. Amitsur, whose

insightful presentation of the proof in [3] stimulated them to attempt

the proof here presented.
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