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Abstract. The Pruefer transformation has been generalized to

matrix differential equations by John Barrett, and Barrett's results

have been partly extended to the case of functions which take

values in a B*-algebra by Einar Hille. By modifying Barrett's

proof, generalizations in the Z¡ "-algebra case become possible.

The Pruefer transformation for second order Sturm-Liouville

equations was generalized to second order matrix differential equa-

tions by Barrett [ 1 ] and subsequently studied by Reid [2 ] and Etgen

[3]. Hille [4] considered the case of differential equations involving

functions which take their values in a 5*-algebra 03 and obtained a

partial extension of Barrett's results in this more general setting. The

purpose of this note is to modify Barrett's original proof in such a way

that it leads to generalizations of Hille's results.

As in [2], instead of considering a differential equation of Sturm-

Liouville type, we shall consider the more general first order system

(1) T = G(x)Z,       Z' = - F(x)Y,

where G(x) and F(x) are selfadjoint strongly continuous 03-valued

functions on some interval [a, °°) and derivatives are taken in the

strong topology. We shall consider a solution Y, Z of (1) satisfying

(2) Y(a) = 0,        Z(a) nonsingular.

Since (1) implies that (F*Z-Z*F)' = 0, we have F*Z-Z*F = con-

stant and, in view of Y(a) =0,

(3) F*Z-Z*F = 0.

Thus our solution pair is conjoined in the terminology of Reid [2].

The Pruefer transformation for (1) consists of determining general-

ized sines and cosines S(x) and C(x) and a nonsingular 03-valued

function R(x) such that the above solution F, Z of (1) admits the

representation
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(4) Y(x) = S*(x)R(x),        Z(x) = C*(x)R(x).

The generalized sines and cosines are obtained as solutions S(x; a, Q)

and C(x; a, Q) of

(5) S' = QC,       C = - QS,

satisfying S(a) =0, C(a) =E, where E is the identity element of 03 and

Q(x) is a selfadjoint strongly continuous function of x. It can be shown

[4, Chapter 9.6] that for such solutions

(6) SS* + CC* = S*S + C*C = E,

(7) SC* - CS* = S*C - C*S = 0.

The equations (1) and (4) yield

(S*R)' = GC*R,        (C*R)' = - FS*R.

Using (5), (6), and (7), these can be solved to yield

(8) R' = (SGC* - CFS*)R,

(9) QR = (CGC* + SFS*)R.

Since Z(a) = C*(a)R(a) =R(a) and Z(a) is nonsingular, (8) implies

(see [4, p. 485]) that R(x) is nonsingular for a=^x< °°, and (9) be-

comes

(9') Q = CGC* + SFS*.

This calculation shows that (8) and (9') are necessary conditions for

the representation (4) to be valid, and a direct calculation [l] also

shows that (8) and (9') are sufficient. However, the difficulty is that

since 5 and C both depend on Q, it is not obvious that (9') has a solu-

tion. Indeed a major portion of Barrett's original proof consists of an

existence theorem for (9') which is established by iteration. This proof

depends heavily on the fact that the »X» matrices S(x) and C(x) are

bounded in the Frobenius-Wedderburn norm whiich assigns \/n to

the unit matrix. It is in this connection that a direct generalization to

the -B*-algebra case fails (see [4, p. 483]).

The question of the solvability of (9) can be circumvented, how-

ever, by defining S(x) and C(x) to be solutions of

(5')        S' = (CGC* + SFS*)C,       C = - (CGC* + SFS*)S

satisfying S(a) =0, C(a) =E. Our modification of Barrett's technique

consists of the following observation.

Theorem 1. If R(x), S(x) and C(x) satisfy (8) and (5'), respectively,

then the Pruefer transformation (4) is valid.
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Proof. We must verify that if (8) and (5') are satisfied, then

(S*R)' = GC*R    and    (C*R)' = - FS*R.

The first of these follows from the direct computation

S*'R + S*R' = C*(CGC* + SFS*)R + S*(SGS* - CFC*)R

= (C*C + S*S)GC*R = GC*R,

and the second follows from a similar computation.

The question remains as to whether (8) and (5') have solutions.

Since (5') is just a first order differential equation in the Banach

space 03 003 with norm

y-i5i + |C|,

it follows from the generalized Picard existence theorem [5, Theorem

3.4.1] that (5') has a local solution at x = a. Given S(x) and C(x) de-

fined by (5'), (8) can clearly be solved for R(x). This shows the exis-

tence of a local Pruefer transformation regardless of whether S(x)

and C(x) are bounded in norm.

In order to obtain a Pruefer transformation valid on [a, °o), Hille

makes the additional assumption that Q(x) commutes with fxa Q(t)dt

for all a and x. With this hypothesis he shows that | C\ áj 1 and

\S\ =T, and this fact leads to an existence proof for (5). The follow-

ing theorem establishes other criteria for the boundedness of | C\ and

|5|.

Theorem 2. If 03 is a C*-algebra (that is an algebra of operators on

a given Hilbert space §), then \ C\ =\ 1 and \S\ =T.

Proof. In the Hilbert space §, consider any solution y, z of the sys-

tem

(10) y = Qz,       z' = -Qy

satisfying y(a) =0 and ||z(a)|| =1. A direct calculation shows that

[(y,y)+ {*,*)]'-0,

so that by the initial conditions

(11) (y,y) + (z,z) = l.

Now suppose that F, Z in 03(§) satisfies (5) and Y(a) =0, Z(a) =£.

To show that | F| =\ 1 and | Z| ^ 1 for all x, we note that for any con-

stant vector e of unit norm the vectors y(x) = Y(x)e, z(x)=Z(x)e
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satisfy (10), so that by (11)

|| Y(x)e\\ = 1,       \\Z(x)e\\ = 1

for any eE& satisfying ||e|| = 1. This completes the proof.

We remark that the above theorem applies to all complex .^-alge-

bras since they are known to be representable as C*-algebras. It also

applies to the real matrix case considered by Barrett [l].

Our final observation is that the boundedness of | S\ and | C| leads

to global solutions directly from (8) and (5') and that it is possible to

use classical existence theory to circumvent the existence theorems

devised by Barrett and Hille for the system consisting of (5) and (9')-

From the generalized Picard existence theorem (see [5, p. 67]) ap-

plied to the space 03©03 it follows that (5') has a right maximal in-

terval of existence [a, b) where a<b^ oo. On this interval (5') has a

solution S, C but no solution exists on any interval [a, bx) with bx>b.

If (5') has the property that all solutions S, C satisfy | C| :gl>

\S\ ^ 1, as is the case if 03 is a C*-algebra (Theorem 2), then one neces-

sarily has b= oo. This follows from the completeness of 03©03 which

makes it possible to give a direct generalization of the standard ex-

tension theorem for finite systems. (See [6, p. 15, Theorem 4.1].)

The above considerations are summarized in the following theorem

and corollary.

Theorem 3. Iffor any c> a every solution of (5') (S(a)=0, C(a)=E)

on [a, c) satisfies \ S(x) | = 1 and | C(x) [ á 1, then there exists a solution

of (5') (S(a) =0, C(a) =E) on the interval [a, <»).

Corollary. // 03 is a C*-algebra then there exists a solution of (5')

(S(a)=0,C(a)=E)on [a, «).
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