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Abstract. Let/, g, and h be polyanalytic in an annular neigh-

borhood A of a complex number z0, finite or infinite, such that g and

h do not have an essential singularity at z0 and g — h is not identi-

cally zero on A. It is shown that if/—g and/—h never vanish on A,

then zq is not an essential singularity of/.

Let G be an arbitrary region of the finite complex plane T. The

function /:G—>T is said to be polyanalytic on G if and only if there

exist (w + l)^l functions fk analytic on G for k = 0, 1, • • • , n such

that

(i) w-S *»/*<*),
4=0

for all zGG, where s denotes the complex conjugate of z. This function

¡s called polyentire if and only if G = T. Note that the functions/* in

equation (1) are uniquely determined on G. Now let zo be a complex

number, finite or infinite. Then z0 is said to be an isolated singularity

of this function/if and only if there is some neighborhood TV of z0 such

that N— {zo} QG. The point z0 is termed an essential isolated singu-

larity of/ or simply an essential singularity of/ if and only if z0 is an

isolated singularity of/ and z0 is an essential isolated singularity of at

least one of the functions/*.

In [l], M. B. Balk derived Picard's big theorem for polyentire

functions by utilizing a theorem of Saxer [4], which generalizes the

classical Schottky theorem. This result of Balk cited above, leads one

to speculate that Picard's big theorem may be valid for polyanalytic

functions at an arbitrary isolated singularity, finite or infinite. In

this paper, we establish a general version of Picard's big theorem for

polyanalytic functions by means of the Poisson-Jensen integral

formula [2, p. l] and quasi-normal families [3]. As a corollary, we

obtain Picard's big theorem for quotients of polyanalytic functions

which satisfy certain conditions.

In order to abridge notation, we shall assume that n is a fixed non-

negative integer and that k is an index where £ = 0,1, • • • , n. Next if
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/ is polyanalytic in R < \ z\ < + °° and is given by equation (1), then

for p è 0 it is convenient to introduce the auxiliary function /( , p)

defined by the condition that/(z, p) = ~%2p2hfk(z)/zk for | z\ >R. Note

that/( , p) is analytic in i?<|z| < + <*> and that/(z, p)=f{z) for

\z\ — p>R. Finally, if/ is an arbitrary function continuous and not

zero on \z\ =p>0, let Apf denote l/2ir times the change in the argu-

ment of/ around the positively oriented circumference \z\ =p.

We now need some preliminary lemmas.

Lemma 1. Suppose that f is polyanalytic in R < \ z\ < + <» and that

there is some X >0 and some sequence pm > RfK diverging to + °° such

that |/(pz, p)| úKp* for \z\ =X and p=pm, where K is some positive

constant and s is some nonnegative integer. Then z0 = °° is not an essen-

tial singularity off.

Proof. If/ is given by equation (1), let/*(z)= ^a^z» for -R<|z|

< -)- oo be the Laurent series expansion of/* with center Zo = °° . Then

the coefficient ¿>„ of z* in the Laurent series expansion of /( , p) with

center Zo= °° is ¿>M = /Jp2ka*,J.t.. Hence by Cauchy's inequalities we

obtain the estimate | ~^2p"+u~'al+t\ ^Kfk11, which is valid for p=pm.

In the above inequality, we see that the coefficients of positive powers

of p must vanish. Thus a* = Q whenever v>s — k. Thus z0= °° is not

an essential singularity of the functions/*. From this the conclusion

follows.

Lemma 2. Suppose that f is polyanalytic in R < \ z\ < -\- °o and that

there is some 0 <X ^ 1 and some sequence pm > R/\ diverging to + °° and

some positive constant K such that |/(pz, p) \ ^K for \ z\ =X and p =pm.

Suppose also that the sequence of integers A\Pf( , p) for p=pmis bounded

above. Then z0 = °° is not an essential isolated singularity off.

Proof. We shall first consider the case when / is polyentire. Sup-

pose that/ is given by equation (1). Let g be the polyentire function

defined by the condition that g(z) =znf(z) for zE:?. Note that g(z, p)

= znf(z, p) for p^O and \z\ >0. Evidently g satisfies the hypotheses

of Lemma 2. There is no loss of generality in assuming that | g(pz, p) \

^ 1 for I z\ =X and p —pm. There is some integer p such that AxPg( , p)

^p for p =pm. Note that g( , p) is an entire function for all p 2; 0. Now

by Jensen's integral formula [2, p. 3] we have that

1   f i— I       L°g I g(*pe**, p) I d<t>
2w J o

(2)

VT XP      U.T 1 g(S)(°' P) I T        >= 2-, Log -¡-¡- + Log-1- í LogXp,
m=1 Ö» i!
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for p=pm, where au ■ • • , a, are the roots of g( ,p)inO<|z| <Xpwith

due regard for multiplicities and s^O is the multiplicity of the root

z = 0 of g( , p). In order to estimate the right-hand side of equation

(2), we make some simple observations. First there is some R¡¡>R/\

such that 5 is independent of p for p>i?o- Thus gCs)(0, p) is a fixed

polynomial in p for p > R0. Also q — AXpg ( , p)—s^p—s for p=pm>R0.

Finally there is some a>0 and some nonnegative integer t and some

Ri>Ro+l such that | ai|, • • • , | aq\ ><r/p' for p>Ri. This last ob-

servation follows from elementary estimates on g( , p) and the fact

that z = 0 is a root of multiplicity 5 of g( , p) for p>R0. Now from

equation (2) and the above observations, we see that there is some

positive constant K and some positive integer p. such that

(3) —        Log I g(\pe», p) | d<f> Ú Log Kp",
¿IT J o

for all p=pm>i?i. From the above inequality, we may now obtain an

upper estimate for |g(z, p)\ when 0^|z|<Xp and p=pm>R1. If

z = reie where 0^r<Xp, then by the Poisson-Jensen integral formula

[2, p. 1 ] we have that

i        i    1 c
Log | g{z,p) | =— I     Log|3g(Apel*,p) | ^ o    ^-r7—J<t>

Lit J n

XV-r2

2ttJ0        """" ' ' X2p2-2Xprcos(ö-(^) + r2

(4)
« Xp(z - a„)

+ ±¿ Log
0=1 X2p2 — á„z

r
+s Log —,

Xp

for p=pm>Ri, whenever g(z, p) ^0. Now | g(z, p) | ^ 1 for |z| =Xp and

p =pm. Hence from equation (4) we obtain the estimate

Xo -T- r   1   /* 2t
(5) Log | g(z, p) |   ^- — I     Log | g(Xpe«, p) | d*.

Xp — r lit J o

which is valid for |z| =r<\p and p=pm>Ri, whenever g(z, p)?i0. If

we now combine inequalities (3) and (5) and then set r=\p/2, we see

that there is some positive constant M and some positive integer v

such that | g(pz, p) | ^Mp" for | z\ =X/2 and p =pm>i?i. From Lemma

1, we see that z0= <=o is not an essential singularity of g. Thus z0= °°

is not an essential singularity of /. Consequently Lemma 2 has been

established in the case that / is polyentire. Next consider the case

when / is polyanalytic in 0< | z\ < + °o and z0 = 0 is not an essential

singularity of /. Then there exists some nonnegative integer s and

some polyentire function g such that g(z) =zsf(z) for all 0< | z\ < + ».

Evidently g satisfies the hypotheses of Lemma 2. Thus Zo= °° is not

an essential singularity of g. Hence Zo = °o is not an essential singular-
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ity of/. Consequently Lemma 2 has been established when/ is poly-

analytic in 0<|z| < + «o and z0 = 0 is not an essential singularity of

/. Finally, let us consider the general case when f is polyanalytic in

R< | z\ < + «o. Let fk(z) = X)aîz" for i?< | z| < + oo be the Laurent

series expansion of fk with center z0=°=. Let gk(z) = yia*z" where

-w^p< + oo for 0<|z|< + co. Let g(z) = ^2zkgk(z) for 0<|z|

< + co. Note that g is polyanalytic in 0< | z\ < + <x> and that z0 = C is

not an essential singularity of g. It is easy to see that/(pz, p) —g(pz, p)

—►0 uniformly on | z\ =X as p—>+ oo. It therefore follows that g satis-

fies the hypotheses of Lemma 2. Thus z0= oo ¡s not an essential singu-

larity of g. Hence z0 = °o is not an essential singularity of f. This

completes the proof of Lemma 2.

Lemma 3. Suppose that f is polyanalytic and not identically zero in

R< | z\ < + oo and that z0 = °o is not an essential singularity of f. Then

there is some finite subset F of Q<\z\ < + °° such that if A is any closed

and bounded subset of 0 < | z | < + =o which does not meet F, then there

exist positive constants K and L and some nonnegative integer t such that

Lp* ̂  |/(pz, p) | ^Kpi for all z^A and for all p sufficiently large.

Proof. It suffices to note that there exist nonnegative integers 5

and t and a nonidentically zero polynomial P(z) in z such that

f(pz, p)/pt-^P(z)/z' uniformly for z in any closed and bounded subset

of 0< \z\ < + oo asp—>+ oo. If we now let F denote the set of nonzero

roots of P, then Lemma 3 readily follows.

We are now in a position to establish a general version of Picard's

big theorem for polyanalytic functions.

Theorem. Suppose that f, g, and h are polyanalytic in an annular

neighborhood A of a complex number z0, finite or infinite, such that g and

h do not have an essential singularity at z0 and g — h is not identically

zero in A. Iff — g andf — h never vanish in A, then z0 is not an essential

singularity of f.

Proof. There is no loss in generality in assuming that Ä = 0. We

first consider the case when z0 = oo. Let the annular neighborhood A

of Zo = °° be R < | zI < + °o. Since the functions/ and f—g never vanish

in i?<|z] < + oo, there exist integers r and 5 such that Ap/ = r and

Ap(/—g) = s for all p > R. Next thereis so meô><r>i?and some integers

u and v such that A„/( , p) =u and Aff[/( , p) — g( , p)] =v for all p>5.

Thus the functions/( , p) and/( , p) —g( , p) haver —m and s— »zeros,

respectively, in ff<|z| <p for all p>5. Consequently, the functions

f(pz, p) and f{pz, p) —g(pz, p) have at most r—u and s—v zeros, respec-

tively, in <r/5<|z| <1 for all p>8. Now by Lemma 3, there is some
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<r/ô<a<b<l and some p>ô such that Lpl^\g{pz, p)\ ^Kpl for

a< | z\ <b and p>p, where L and K are some positive constants and

t is some nonnegative integer. Let B denote the annulus a<[z| <b

and let pm>p be a sequence diverging to + ». For m^l, define Hm

on B by the condition that Hm(z) =f(pmz, Pm)/g(pmz, pm) for z££.

Let 3C denote the collection of these functions Hm for w^l. First

observe that each function Hm is analytic in B. Next observe that

each function Hm assumes the value zero and one at most r—u and

s — v times, respectively, in B. Consequently, the family JC is quasi-

normal of order g on B where 0^g^max(r — u, s—v) [3, p. 67]. Let us

first consider the case when q^i. Then there is some subsequence

Hmv of Hm and q points zx, • • • , z„ of B such that Hmv(z)—►« almost

uniformly on B— }zi, • • • , zq} as v—>+<*>. Then we may choose

a<\<b so that Hmv(z)—><x> uniformly on \z\ =X as v—»+°°- Hence

there is some integer v0 so that |i7m„(z)| ^1 for \z\ =X and v^v0-

Thus |/(pz, p)| è|g(pz, p)| ^Lp'^Lp.' for |z| =X and p=pmv and

ti^Do. Note also that AXp/( , p) ^Ap/( , p)=r for p=pmv and z>Sïî>o-

Thus by Lemma 2, zo= °o is not an essential singularity of/. Next

consider the case when q = Q. Thus the family 3C is normal in B.

There are now two possibilities to consider. First, there may be a

subsequence of Hm which diverges to infinity almost uniformly on B.

In this eventuality, one readily verifies as before that So — °° is not an

essential singularity of/. Second, there may be a subsequence Hm<¡ of

Hm which converges almost uniformly on B. Choose a<X<6. Hence

there is some positive constant M and some integer Vo so that

|-ffm„(z)| m M for \z\ =X and v^v0. Thus |/(pz, p)| ^M\g(pz, p)\

t^MKp* for \z\ =X and p=pmv and v^vo. Hence by Lemma 1, we

see that z0 = <» is not an essential singularity of /. Thus the theorem

has been established in the case that z0 = «. The case when z0 is

finite is reduced to the case when Zo is infinite by means of an inver-

sion with center zo. This completes the proof of the theorem.

As applications of the above theorem, we offer the following corol-

laries.

Corollary 1. Suppose that f is polyanalytic with an isolated

singularity z0. If f omits two distinct finite values in some annular

neighborhood of Zo, then Zo is not an essential isolated singularity of f.

Corollary 2. Let z0 be an essential isolated singularity of a poly-

analytic function f. Then in every annular neighborhood of z0, the

values of the function are dense in the extended complex plane.

Corollary 3. Suppose that f and g are polyanalytic functions with

an isolated singularity z0 such that z0 is not an essential singularity of
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g and g never vanishes in some annular neighborhood of z0. If the func-

tion f/g omits two distinct finite values in this annular neighborhood of

Zo, then Zo is not an essential singularity of f.
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