GRAPHS WITH A LARGE CAPACITY

M. ROSENFELD

ABSTRACT. A constructive method for obtaining graphs with a relatively large capacity is given. The method uses products of graphs.

Introduction. In this note we present a constructive method for obtaining graphs with a relatively large capacity and obtain an upper bound for the capacity $\theta(G)$ of a graph G. The capacity of a graph was introduced by Shannon [5], for investigations of problems concerning noisy channels in information theory. If $\mu(G)$ is the maximal number of independent vertices in the graph G, it is well known [5], that $\theta(G) \ge \mu(G)$. Our method will yield for every $k \ge 0$, a graph G_k such that $\theta(G_k) \ge k \cdot \mu(G_k)$. The construction is based on the composition of graphs introduced by Harary [1].

The definitions and generally accepted notations throughout this paper will be those used in Harary [2]. $\mu(G)$ will denote the maximal number of independent vertices in G. Since the strong product and composition of graphs (for definitions see Harary [1]) are associative, powers of G with respect to each one of them is well defined. We denote those powers by G^n and $G^{[n]}$ resp. The capacity of G is defined by

$$\theta(G) = \sup_{n} \mu(G^{n})^{1/n}.$$

Upper bound for $\theta(G)$: If A and B are independent sets in G and H resp., $A \times B$ is independent in $G \times H$, hence

$$\mu(G \times H) \ge \mu(G) \cdot \mu(H) \Rightarrow \mu(G^n) \ge \mu^n(G) \Rightarrow \theta(G) \ge \mu(G).$$

To obtain an upper bound, we consider the function $\alpha(G)$ introduced in [4], and defined as follows: Let $V(G) = \{g_1, \dots, g_n\} \cdot \{C_1, \dots, C_s\}$ is a fixed ordering of all maximal complete subgraphs of G. $\alpha_i' = 1$ if $g_i \in C_j$, $\alpha_i' = 0$ otherwise

$$P(G) = \left\{ (x_1, \dots, x_n) \mid x_i \ge 0, \sum_{i=1}^n \alpha_i^j x_i \le 1, 1 \le j \le s \right\},$$

$$\alpha(G) = \max_{x \in P(G)} \sum_{i=1}^{n} x_i, \qquad x = (x_1, \dots, x_n).$$

Received by the editors December 5, 1969.

AMS subject classifications. Primary 0540; Secondary 9420.

Key words and phrases. Graphs, independence number, capacity of graphs, composition, strong product.

THEOREM 1. If G is an ordinary graph then

$$\theta(G) \leq \alpha(G)$$
.

PROOF. Let H be any graph and let $A \subset V(G \times H)$ be a maximal independent set of vertices in $G \times H$ (card $A = \mu(G \times H)$). Let

$$A_i = \{h \mid (g_i, h) \in A\}, \quad A_i' = \{(g_i, h) \mid (g_i, h) \in A\}.$$

Obviously, $\{A'_i\}$ is a disjoint decomposition of A. Hence

$$\sum_{i=1}^{n} \operatorname{card} A_{i}' = \mu(G \times H).$$

By the definition of A_i and the independence of A we have card A_i = card A'_i , A_i is an independent set in H. Let

$$x_i = \operatorname{card} A_i \cdot 1/\mu(H)$$
.

We will show first that $(x_1, \dots, x_n) \in P(G)$. For simplicity of notation, we may assume without loss of generality, that $C_j = \{g_1, \dots, g_k\}$. Since A is independent, and $(g_i, g_j) \in E(G)$, $1 \le i, j \le k$, we must have $A_i \cap A_j = \emptyset$ and $A_i \cup A_j$ is an independent set in H. By the same argument, $\bigcup_{i=1}^k A_i$ is an independent set in H and the union is disjoint. Hence

$$\mu(H) \sum_{i=1}^{n} \alpha_{i}^{j} x_{i} = \sum_{i=1}^{k} \operatorname{card} A_{i} = \operatorname{card} \bigcup_{i=1}^{k} A_{i} \leq \mu(H) \Rightarrow \sum_{i=1}^{n} \alpha_{i}^{j} x_{i} \leq 1.$$

Therefore $(x_1, \dots, x_n) \in P(G)$. Hence we have

$$\alpha(G) \ge \sum_{i=1}^{n} x_i = \frac{1}{\mu(H)} \sum_{i=1}^{n} \operatorname{card} A_i = \frac{1}{\mu(H)} \sum_{i=1}^{n} \operatorname{card} A_i' = \frac{\mu(G \times H)}{\mu(H)}$$

 \Rightarrow

$$\alpha(G) \cdot \mu(H) \geq \mu(G \times H).$$

Since $\alpha(G) \ge \mu(G)$ [4], by induction we obtain

$$\mu(G^n) \leq \mu(G^{n-1})\alpha(G) \leq \alpha^n(G) \Rightarrow \theta(G) \leq \alpha(G).$$

REMARK. In [4], it was shown that $\mu(G \times H) = \mu(G) \cdot \mu(H)$ for all graphs H iff $\alpha(G) = \mu(G)$. Hence for such graphs we have $\theta(G) = \alpha(G) = \mu(G)$. Since the capacity of no other graphs is known nothing else can be said about the upper bound established above.

THEOREM 2. For every k>0, there exists a graph G_k such that $\theta(G_k) \ge k\mu(G_k)$.

PROOF. Let G_0 be a self-complemented graph with n vertices such that $\mu(G_0) \cdot \mu(\overline{G}_0) < n$ (e.g. a pentagon). Let p be a positive integer such that $n^p \leq k^2 \mu^{2p}(G_0)$. Obviously, such a number exists since by our assumptions $\mu^2(G_0) = \mu(G_0) \cdot \mu(\overline{G}_0) < n$. Let $G_k = G_0^{[p]}$. It is easy to see that $\mu(G[H]) = \mu(G) \cdot \mu(H)$, hence $\mu(G_k) = \mu^p(G_0)$. If G and H are self-complemented, it was shown by Sabidussi that G[H] is self-complemented, hence G_k is self-complemented. Consider the set $A = \{(g, g) | g \in V(G_k)\}$ as a subset of $V(G_k \times \overline{G}_k)$. Since $(g, g') \in E(G_k) \Rightarrow (g, g') \notin E(\overline{G}_k)$ it follows that A is an independent set of vertices in $G_k \times \overline{G}_k$. Since card $A = n^p$ we get

(*)
$$\mu(G_k^2) = \mu(G_k \times \overline{G}_k) \ge n^p.$$

Ljubič [3] has shown that $\theta(G) = \lim_{n} (\mu(G^n))^{1/n}$ therefore we have in general

$$\theta(G) = \lim_{n} (\mu(G^{2n}))^{1/2n} = \left(\lim_{n} \mu(G^{2n})^{1/n}\right)^{1/2} = \theta^{1/2}(G^{2}).$$

By using the lower bound for the capacity of a graph and (*) we obtain

$$\theta(G_k) = \theta^{1/2}(G_k^2) \ge n^{p/2} \ge k\mu^p(G_0) = k\mu(G_k^{(p)}) = k \cdot \mu(G_k).$$

REFERENCES

- 1. F. Harary, On the group of the composition of two graphs, Duke Math. J. 26 (1959), 29-34. MR 22 #1523.
 - 2. ——, Graph theory, Addison-Wesley, Reading, Mass., 1969.
- 3. A. Ljubič, A remark on a problem of C. Berge, Sibirsk. Mat. Z. 5 (1964), 961-962. (Russian) MR 29 #5238.
- 4. M. Rosenfeld, On a problem of C. E. Shannon in graph theory, Proc. Amer. Math. Soc. 18 (1967), 315-319. MR 34 #7405.
- 5. C. E. Shannon, The zero error capacity of a noisy channel, IRE Trans. Information Theory IT-2 (1956), 8-19. MR 19, 623.

LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803