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Abstract. If pix) is nonnegative, monotonie and concave, no

solution of y"+p(x)y = 0 has more than n + 1 zeros in the interval

(a, b) defined by

(ft - a) f p(x)dx = nV.
J a

This is proved by showing that, if y'{a) =0, the »th succeeding zero

of y'(x) will not precede b.

This note gives a proof of the following:

Theorem. Let p(x) be nonnegative, monotonically nondecreasing, and

concave (no point on an arc lies below the chord). Let y(x) be a solution of

(1) y" + p(x)y = 0

whose derivative vanishes at x = a. Then if n is a positive integer and b

is defined by

(2) (b - a) j   p(x)dx = »V,

the derivative of any other solution of (I) will vanish at most n times

in (a, b).

This is a companion to the theorem of [3], which has been inde-

pendently generalized by Cohn [l] and by Elbert [2]. A corollary

shows that no solution of (1) can have more than n+l zeros in the

closed interval [a, b].

Throughout, y(x) will be the solution of (1) satisfying y(a) = l,

y'(a) =0; and in the first part of the paper n will be 1.

If p(x) is constant the derivative vanishes exactly n times, so it

will be assumed that p(x) is increasing; if p(x) decreases, the trans-

formation x' = —x reduces the problem to the case considered. Since

a linear transformation on x will carry (a, b) into (0, tt), the solution

y(x) will be assumed to satisfy y(0) = l, y'(0)=0, y'(ir) = 0, with

y(x) = 0 at exactly one intermediate point x = c.
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It is convenient to introduce polar coordinates, as in [5], by

y=p cos 6, y' = —p sin 6, so that

(3) p = p(p - 1) sin 0 cos 0,

(4) 6' = 1 + (p - 1) cos2 6.

Since ö(0) =0andö(ir) =x, (4) can be integrated to give

(5) 7T = ir + I    (p - 1) cos2 0¿x,    so   I    (/> — 1) cos2 Odx = 0.

It will be shown by approximating (5) that

f   f> - l)d* ̂  0.
•J o

From (5), p — \ cannot have one sign in (0, tv). Then p(x) = i at

exactly one point; say p(d) = 1, 0<d<7r.

Now suppose the intervals (0, 7r/2) and (7r/2, ir) of 6 each divided

into m equal parts Ad. Let the values of x corresponding to the end-

points be

.r0 = 0<Xi<£2< • • • <xm = c    and    X0 = ir>X1> ■ ■ ■ >Xm = c.

Let Akx=xk—x;t_iand AkX = Xk-i— Xk. From (4),

(p — 1) cos2te = Akx + (p~k — 1) cos2 9k-AkX,

where the barred letters denote mean values.

Then

(6a) Akx = A0/[1 + fa - 1) cos2^].

Similarly,

(6b) AkX = A0/[1 + (Pi - 1) cos2 &].

The capital P will mean that x is in some interval AkX.

Theorem 1. ¡I (p-l)dx^O.

Proof. Given any positive number e, an integer m can be found

such that

/» c m
(1 - p) cos2 9dx - Z) [(1 - pk) cos2Öt]A^ < e/2,

0 k=l
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/» t m

(7b)    -e/2 <   I    (p- 1) cos20¿* - £ [(?* - 1) COS20*]AA.X < e/2,
»J c k=l

where Akx and A*Z are determined from (6a) and (6b). In fact, m can

be chosen so large that, while maintaining the inequality, (7a) and

(7b) can be modified by choosing p~k and Pk as the values of p(x) at

the left-hand ends of the intervals, and cos2 6k can be the same for

AiX and AkX. This will be assumed done, and the bars omitted. Also,

it will be assumed that xr = d for some r. This may mean that the

approximations in (7a) and (7b) are really to integrals over slightly

smaller intervals, but the error can be made less than e/2 by taking

m large enough.

From (5), 8<x, 0<x<x, so t/2<c. To show that d<c, suppose

the contrary, and consider (7b) with c replaced by d and m by m' =\m.

From (6a) and (6b), Ak-iX>Akx and Akx>AkX, if X is taken ^d.

Then in corresponding terms of the sums in (7a) and (7b), \—pk

>P„-t.Thue

/(l - p) cos2 6dx è  |   (p - 1) cos2 Odx.

When the integral over (c, d) is added, (5) is contradicted.

Now (6a) and (6b) show

(8a) A*_ix > Akx,     x < d,

(8b) Afc_!X < AkX,    and

(8c) Akx > AkX,    x < d.

The approximations (7a) and (7b) can be combined to give

m

(9) -It < £ [(pk - l)A4x + (Pk - l)AtX] cos2 6k < 2e.
k=l

Now if any term in (9) is negative, so are its predecessors. For this

can only occur when xk=\d. Suppose Dk = (pk — l)Akx-\-(Pk — \)AkX

<0. From the monotony of £(x),

(pk-t - 1) = pk - 1 - «i,       (Pk-i - 1) - Pk - 1 + «2;

from (8a) and (8b),

At_ix = Akx + ßi   and    At_iX = AkX — ß2,

where the a, and ß, are positive. Then
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Dk-x = (pk-i - l)Afc_i* + (Pk-i ~ i)Ak-xX

= [(Pk - l)(A,o; + ßx) + (Pk - l)(AkX - ß2)]

- cxx(Akx + ßx) + a2(AkX - ß2).

The square bracket is <Dk<0, because the negative term is multi-

plied by a larger positive number, and the positive term by a smaller,

than before. Since AiX>A¿X by (8c), the concavity of p(x) shows

pk — pk-x > Pk-i — Pk, so «i > a2. H ence Dk~x < Dk.

Now suppose (9) written in the form —2e< J^t^i akbk<2e, where

bk = cos2 dk- Let X = sec2 6T, where the rth term is the last negative term

in (9), and Sm = X?-i a*- Then

m

Sm -2\e<Yl a*(l - XJt) < Sm + 2Xe.
k=X

The choice of X shows Xi*^ 1 if k^r and <1 if k>r. Thus (1 —\bk) is

negative if a* is negative and positive or zero otherwise. Hence the

sum in the inequality is positive. Since Sm approximates fa (p-l)dx,

the theorem is proved.

If the original independent variable is reintroduced, Theorem 1

becomes fl [p— ir2/(b— a)2]¿x^0. The proof of the main theorem

uses this form.

Let the zeros of y'(x) be x0<Xi< • • • <x„.

Lemma 1. xk—xk-x>xk+x—xk, & = 1, 2, • • • , n.

Proof. If (5) is formed for these intervals, the functions p that

appear are the original functions multiplied by (xk— Xk-x)2/^2 and

(xjb+i — xk)2/ir2 respectively. Then unless the lemma is true, the value

of p — 1 is greater everywhere in the second integral than in the first,

so the integrals cannot both be zero.

Proof of the main theorem. Application of Theorem 1 to the

successive pairs of zeros of y'(x) gives

/
p(x)dx ^ 23 t2/(** — as*_i).

k=X

Lemma 3 of [3], due to E. Makai, Jr., then shows that

/•in

f     p(x)dx ^ n2ir2/(xn — x0).

Then if x0 = a, xn^b. Equations (3) and (4), with 6 replaced by 9—a,

show that the zeros of the derivative of any other solution of (1) must

alternate with the |xt}. This completes the proof.
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Lemma 2. Let Y(x) be the solution of (1) that satisfies F"(0)=0,

F'(0) = 1. Then the next zero of Y(x) precedes the first zero of y'(x).

Proof. Suppose the independent variable transformed as before,

and suppose Y(ir) > 0. Let z = sin x. Then

0 ^  f   [(Yz' - Y'zY/Y^dx
J o

=  f   (Yz' - Y'z)[d(z/Y)/dx]dx
J o

-  I    (/>Fz- Yz)(z/Y)dx.
o      •» o

Since z/ F has a limit at x = 0, the integrated term is zero, so

(1 - í>)z2¿x =   I    (1 - p)dx +  I    (/> - 1) cos 2xáx.
0 " 0 •'O

But the first integral is negative by Theorem 1, and the second, since

p — 1 is concave, is not positive, by a lemma of E. Makai [4, pp.

370-371 ]. This contradiction establishes the lemma.

Corollary 1. If the original independent variables are used, the nth

zero of Y(x) after x0 = a precedes the nth zero of y'(x). This follows from

the application of Lemma 2 to successive pairs of consecutive zeros.

Corollary 2. From Corollary 1 and the fact that the zeros of two

solutions of (Í) interlace, it follows that if \xk}, xq<Xi<Xî< • • • <x„,

are n+i consecutive zeros ofy'(x), there will be solutions of (1) with n+1

zeros in (x0, x„) ; since a zero of a solution separates two zeros of its deriva-

tive there can be no more than n +1 zeros of a solution in (x0, x„).

The results are the best possible, in the sense that, given a positive

integer n, we can find p(x) such that some solution of (1) has n+i

zeros in (a, b), where b is determined by (2). The argument uses only

known properties of Bessel functions, with p(x) =cxm~i, where m is

easily chosen in the interval (2,3).
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