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Abstract. We produce a lower bound for the degree of uniform

polynomial approximation to continuous functions on the whole

real line usingâthe weight function exp(—1*|"), a^2. This lower

bound has the same order of magnitude as the upper bound pro-

duced previously by Dirbasyan.

Given a continuous function F(x) and a weight function h(x) on

(—00, 00) the modulus of continuity of F is defined by uF(8) =

Sup I F(xi) — F(xí) I, the supremum being taken over all real xi, x2

satisfying | Xi — Xt\ ë=ô(l + | Xi\ )(1 + \x2\ ), and the iVth degree of

approximation of F is given by

EN(F, h) = inf Sup I F{x) - P(x) \ h(x) = inf||f - P\\,

the infimum being taken over all polynomials P(x) of degree ^N and

the supremum over all real x.

In an extension of the well-known result of Dunham Jackson [3],

Dzrbasyan [2] showed that, for a> 1, EN(F, exp( — | ¡e| ")) is bounded

above by Co)f(N~1+P), where ß = orl and Cis a positive constant. The

following theorem shows that, for a ^ 2, this result is best possible.

Theorem. Let a^2 and ß = a~1. For each positive integer N there is

a function F, continuous on ( — », 00 ), such that

Em-i(F, exp(- | *|«)) >—œF(N~^).
4

Proof. We let da(x) be the measure with masses ( — l)*(#+t) at the

points x = ka, k = 0, ±1, • • -, ±N, a = i-ßN~1+fi, so that

I     xHaix) = Amtn    (t = - No) = 0,        0 - 0, 1, • • • , 2N - 1.

If we now set a(x)=flxda(t) and let F(x) be the continuous

"sawtooth" function satisfying F(x)=0 for |x|^7Va and F'(x)

= —sign cr(x) for \x\ <Na, x^ka, we see thatwF(N-l+ß) —a and, for
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any polynomial P(x) of degree ^2N— 1,

F(x)da(x) =   I     [F(x) - P(x)] exp(- | *|«) exp( | x\<*)da(x).
-OO ''-CO

Thus,

HF-PH"1!  f°°F(*)Är(*)|
I  ̂  -00 I

*/■ -2N \- 2- ( „  ,   Jexp(o-|t|«)

"    /  W \  1    /•-       / &     \
— > , I 1- I      exp I — a;2 H-# ) ¿«

*±^V^ + */Vt^—    V       va7 /

=- I      exp( —.T2)   exp I-) + expl-)       dx
V*J-» L     \2VN/ \2vnJ]

2
<- 4»,

V3

where the final inequality is obtained from the inequality e"-\-e~"

<2expQw2) for w?¿0.

However, integration by parts yields

n oo /» oo y» oo 1

I     F(x)¿<t(x) = - F'(*y(z)dx =1      \o(x)\dx=— iNa
J-<B J -oo •'-oo 2

which, combined with the above, completes the proof.
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