TRACE-CLASS FOR AN ARBITRARY H*-ALGEBRA

PARFENY P. SAWOROTNOW1 AND JOHN C. FRIEDELL

ABSTRACT. Let A be a proper H^* -algebra and let $\tau(A)$ be the set of all products xy of members x, y of A. Then $\tau(A)$ is a normed algebra with respect to some norm $\tau(\cdot)$ which is related to the norm $\|\cdot\|$ of A by the equality: $\|a\|^2 = \tau(a^*a)$, $a \in A$. There is a trace tr defined on $\tau(A)$ such that $\operatorname{tr}(a) = \sum_{\alpha} (ae_{\alpha}, e_{\alpha})$ for each $a \in \tau(A)$ and each maximal family $\{e_{\alpha}\}$ of mutually orthogonal projections in A. The trace is related to the scalar product of A by the equality: $\operatorname{tr}(xy) = (x, y^*) = (y, x^*)$ for all $x, y \in A$.

1. The trace-class of operators (τc) was introduced by R. Schatten [5] as the set of all products of Hilbert-Schmidt operators acting on a Hilbert space. This class has its own norm, in which it is complete, and a trace, which can be used to define a scalar product on the set (σc) of all Hilbert-Schmidt operators to convert it into a simple H^* -algebra.

The present work deals with a generalization of this theory to an arbitrary H^* -algebra.

There are two ways this generalization can be achieved. One way would be to decompose an H^* -algebra into simple H^* -algebras, represent each simple H^* -algebra as a Hilbert-Schmidt class of operators, construct the corresponding trace-classes, take their direct sum and then derive the desired properties of the class $\tau(A) = \{xy \mid x, y \in A\}$ through identifying it with this direct sum. The other approach, subject of this paper, is to apply Schatten's technique directly to an H^* -algebra.

2. Let A be a proper H^* -algebra (A is a Banach algebra whose norm is a Hilbert space norm and which has an involution $x \rightarrow x^*$ such that $(y, x^*z) = (xy, z) = (x, zy^*)$ for all x, y, z in A (see [1])). A right centralizer on A is a bounded operator S on A such that (Sx)y = S(xy) for all $x, y \in A$ [2]. Note that each operator of the form $La: x \rightarrow ax$ $(x, a \in A)$ is a right centralizer on A. A projection in A is a nonzero member e of A such that $e^2 = e = e^* \neq 0$ (e is a nonzero selfadjoint

Presented to the Society, February 25, 1967; received by the editors August 15, 1968 and, in revised form, October 17, 1969.

AMS 1969 subject classifications. Primary 4650, 4660; Secondary 4615.

Key words and phrases. Trace-class, H*-algebra, Hilbert-Schmidt operator, trace, right centralizer, involution, mutually orthogonal projections.

¹ The first author was supported by the National Science Foundation Grant GP-7620.

idempotent). For simplicity we shall refer to a maximal family $\{e_{\alpha}\}$ of mutually orthogonal projections as a *projection base* (note that in this case $A = \sum_{\alpha} e_{\alpha}A = \sum_{\alpha} Ae_{\alpha}$). A positive member of A is an element $a \in A$ such that $(ax, x) \ge 0$ for all $x \in A$. Note that each positive member of A is selfadjoint. A normal element in A is some $b \in A$ such that b*b = bb*. A definition of the spectrum of a member of an algebra can be found on p. 28 of [4].

LEMMA 1, Let b be a normal element in A. Then there exists a projection base $\{e_{\alpha}\}_{{\alpha}\in\Gamma}$ for A and a family $\{\lambda_{\alpha}\}_{{\alpha}\in\Gamma}$ of scalars such that $b=\sum_{{\alpha}\in\Gamma}\lambda_{{\alpha}}e_{\alpha}$. The nonzero numbers λ_{α} are nonzero numbers in the spectrum of b. If $b=a^*a$ for some $a\in A$ then every $\lambda_{\alpha}\geq 0$.

PROOF. Let B be a maximal commutative *-subalgebra of A containing b. Then B is a proper H^* -algebra: if xB=0 for some $x \in B$ then $x^*x=0$ and this implies that x=0 (Lemma 2.2, p. 370 in [1]). Then [1, Theorem 3.3] there exists a maximal family $\{e_\alpha\}_{\alpha\in\Gamma}$ of mutually orthogonal projections in B such that each $w \in B$ has the form $w = \sum_{\alpha\in\Gamma} \lambda_\alpha e_\alpha$. Note that each $\lambda_\alpha \neq 0$ is in the spectrum of w in B: if $\lambda_\alpha^{-1}w + y - \lambda_\alpha^{-1}wy = 0$ for some $y \in B$ then

$$0 = e_{\alpha}(\lambda_{\alpha}^{-1}w + y - \lambda_{\alpha}^{-1}wy) = \lambda_{\alpha}^{-1}e_{\alpha}w + e_{\alpha}y - \lambda_{\alpha}^{-1}e_{\alpha}wy$$
$$= e_{\alpha} + e_{\alpha}y - e_{\alpha}y = e_{\alpha}.$$

It follows that each $\lambda_{\alpha} \neq 0$ belongs to the spectrum of w in A also (see [4, p. 182]).

Note now that $\{e_{\alpha}\}$ is maximal relative to A also: if e is a projection orthogonal to each e_{α} then e is orthogonal to entire B, since the set of all linear combinations of members of $\{e_{\alpha}\}$ is dense in B; therefore ex = xe for each $x \in B$ and so $e \in B$. But this would contradict maximality of $\{e_{\alpha}\}$:

If $w = a^*a$ for some $a \in A$ then $\lambda_{\alpha} \ge 0$ for each $\alpha : \lambda_{\alpha}(e_{\alpha}, e_{\alpha}) = (\lambda_{\alpha}e_{\alpha}, e_{\alpha}) = (we_{\alpha}, e_{\alpha}) = (ae_{\alpha}, ae_{\alpha}) \ge 0$ and $(e_{\alpha}, e_{\alpha}) \ge 0$.

REMARK. Lemma 1 was originally stated (somewhat differently) for members of A of the form $b=a^*a$. The present form was suggested by the referee. We modified his proof somewhat.

COROLLARY 1. For each $a \neq 0$ in A there exists a sequence $\{e_n\}$ of mutually orthogonal projections and a sequence $\{\lambda_n\}$ of positive numbers such that $a^*a = \sum_n \lambda_n e_n$. Note also that $a^*a e_n = e_n a^*a = \lambda_n e_n$ for each n.

Now for each n let $f_n = \lambda_n^{-1} a e_n a^*$. Then $f_n^2 = \lambda_n^{-2} a e_n a^* a e_n a^* = f_n$, $f_n^* = f_n$ and $f_n f_m = \lambda_n^{-1} \lambda_m^{-1} a e_n a^* a e_m a^* = 0$ if $m \neq n$. This simply means that $\{f_n\}$ is also a family of mutually orthogonal projections. Using this fact

one can prove that the series $\sum_{n} \mu_{n}^{-1} e_{n} a^{*}x$, where $\mu_{n} = (\lambda_{n})^{1/2}$ for each n, converges for each $x \in A$. It is done by showing that the series $\sum_{n=1}^{\infty} ||\mu_{n}^{-1} e_{n} a^{*}x||^{2}$ converges:

$$\sum_{n=1}^{k} \|\mu_{n}^{-1}e_{n}a^{*}x\|^{2} = \sum_{n=1}^{k} \mu_{n}^{-2}(e_{n}a^{*}x, e_{n}a^{*}x) = \sum_{n=1}^{k} (\lambda_{n}^{-1}ae_{n}a^{*}x, x)$$
$$= \sum_{n=1}^{k} (f_{n}x, x) = \sum_{n=1}^{k} \|f_{n}x\|^{2} \leq \|x\|^{2}$$

if k is any positive integer. Convergence of the series $\sum \mu_n^{-1} e_n a^* x$ will be used later.

Now let a be a fixed member of A and let $\{e_n\}$ and $\{\lambda_n\}$ be as in Corollary 1 $(a^*a = \sum_n \lambda_n e_n)$. For each n let $\mu_n = (\lambda_n)^{1/2} \ge 0$. Then

$$\sum_{n=1}^{k} \|\mu_{n}e_{n}\|^{2} = \sum_{n=1}^{k} \mu_{n}^{2}(e_{n}, e_{n}) = \sum_{n=1}^{k} (\lambda_{n}e_{n}, e_{n}) = \sum_{n=1}^{k} (a^{*}ae_{n}, e_{n})$$

$$= \sum_{n=1}^{k} \|ae_{n}\|^{2} \leq \|a\|^{2}$$

for each k and so $\sum_{n=1}^{\infty} \mu_n e_n$ converges. Define $[a] = \sum_n \mu_n e_n$. Then we have:

LEMMA 2. For each $a \in A$ there exists a unique positive member [a] of A such that $[a]^2 = a^*a$ (note that $[a]^* = [a]$).

Now for a given $a \in A$ we define a partial isometry W on A by setting $Wx = \sum_n \mu_n^{-1} a e_n x$ (where $\{\mu_n\}$ and $\{e_n\}$ are as above). Then W^* is also a partial isometry, $W^*x = \sum_n \mu_n^{-1} e_n a^*x$ for each $x \in A$ (convergence of this series was established above), W[a] = a, $W^*a = [a]$ and both W, W^* are right centralizers. Note also that ||W|| = 1, $||W^*|| = 1$. We shall refer to the operator W as the partial isometry associated with a.

3. Now we follow the theory of R. Schatten developed on pp. 36-42 of [5].

DEFINITION. We define the trace-class for A to be the set $\tau(A) = \{xy | x, y \in A\}$.

If $a \in \tau(A)$, a = xy for some x, $y \in A$ and $\{e_{\alpha}\}$ is a projection base for A, then the series $\sum_{\alpha} (ae_{\alpha}, e_{\alpha})$ converges absolutely, since

$$\left| (ae_{\alpha}, e_{\alpha}) \right| = \left| (ye_{\alpha}, x^*e_{\alpha}) \right| \leq \left| |ye_{\alpha}| \cdot ||x^*e_{\alpha}| \right| \leq \frac{1}{2} (||ye_{\alpha}||^2 + ||x^*e_{\alpha}||^2)$$

for each α (consult the proof of Lemma 4 on p. 30 of [5]). Note also that $\sum_{\alpha} |(ae_{\alpha}, e_{\alpha})| < \frac{1}{2} (||y||^2 + ||x^*||^2)$. We define tr $a = \sum_{\alpha} (ae_{\alpha}, e_{\alpha})$

= $\sum_{\alpha} (ye_{\alpha}, x^*e_{\alpha}) = (y, x^*)$ and this expression is independent for both $\{e_{\alpha}\}$ and a particular decomposition of a into the product of x and y. Note also that $\operatorname{tr}(a^*a) = (a, a) = ||a||^2$ for each $a \in A$.

LEMMA 3. The following statements are equivalent:

- (i) $a \in \tau(A)$.
- (ii) $[a] \in \tau(A)$.
- (iii) There exists a positive $b \in A$ such that $b^2 = [a]$.
- (iv) $\sum_{\alpha \in \Gamma} ([a]f_{\alpha}, f_{\alpha}) < \infty$ for some projection base $\{f_{\alpha}\}$.

PROOF. This lemma is the obvious modification of Lemma 2 on p. 37 of [5] and we need only to prove that (iv) implies (iii). Let $\{e_n\}$ and $\{\lambda_n\}$ be as in Corollary 1 above; for each n let $\gamma_n \ge 0$ be such that $\gamma_n^4 = \lambda_n$. Then $[a] = \sum_n \gamma_n^2 e_n$ and using this fact one can show that the series $\sum_n ||\gamma_n e_n x||^2$ converges for each $x \in A$:

$$\begin{split} \sum_{n=1}^{k} \left\| \gamma_n e_n x \right\|^2 &= \left| \sum_{n=1}^{k} (\gamma_n^2 e_n x, x) \right| = \left| \sum_{n=1}^{k} (e_n[a] x, x) \right| \\ &= \left| \left(\sum_{n=1}^{k} e_n[a] x, x \right) \right| \leq \left\| \left(\sum_{n=1}^{k} e_n \right) [a] x \right\| \cdot \left\| x \right\| \leq \left\| [a] \right\| \cdot \left\| x \right\|^2, \end{split}$$

and this is valid for each k. We define the right centralizer T on A by setting $Tx = \sum_{n=1}^{\infty} \gamma_n e_n x$, $x \in A$. Then T is the positive square root of the operator $L[a]: x \to [a]x$, and this means that $||Tf_{\alpha}||^2 = (T^2 f_{\alpha}, f_{\alpha}) = ([a]f_{\alpha}, f_{\alpha})$ for each f_{α} in the projection base in (iv). Statement (iv) in Lemma 3 then implies that the series $\sum_{\alpha} ||Tf_{\alpha}||^2$ converges, i.e. there exists a countable subset $\Gamma_0 = \{1, 2, \dots, n, \dots\}$ of Γ such that $Tf_{\alpha} = 0$ if $\alpha \notin \Gamma_0$ and $\sum_{n=1}^{\infty} ||Tf_n||^2 < \infty$. We define $b = \sum_{\alpha \in \Gamma} Tf_{\alpha} = \sum_{\alpha \in \Gamma_0} Tf_{\alpha} = \sum_{n=1}^{\infty} Tf_{n-2}$ Let us show that Tx = bx for each $x \in A$. Let $R = \sum_{n=1}^{\infty} f_n A$; then $R^p = \sum_{\alpha \in \Gamma_0} f_{\alpha} A$ and Tx = 0 = bx for each $x \in R^p$. If $x \in R$ then $x = \sum_{n=1}^{\infty} f_n x$ and

$$Tx = T\left(\lim_{\mathbf{k}} \sum_{n=1}^{k} f_n x\right) = \lim_{\mathbf{k}} T\left(\sum_{n=1}^{k} f_n x\right) = \lim_{\mathbf{k}} \sum_{n=1}^{k} T(f_n x)$$
$$= \lim_{\mathbf{k}} \sum_{n=1}^{k} (Tf_n) x = \lim_{\mathbf{k}} \left(\sum_{n=1}^{k} Tf_n\right) x = \left(\lim_{\mathbf{k}} \sum_{n=1}^{k} Tf_n\right) x$$
$$= \left(\sum_{n=1}^{\infty} Tf_n\right) x = bx.$$

It follows then that $b^2x = T^2x = [a]x$ for all $x \in A$, which implies that $b^2 = [a]$, since A is proper.

² Note that the members of the family $\{Tf_{\alpha}\}$ are mutually orthogonal, since $Tf_{\alpha} = (Tf_{\alpha})f_{\alpha}$ for each α .

As in the proof of Lemma 3, p. 38, of [5] we can show now that $\tau(A)$ is a linear subspace of A closed under the involution and right centralizers. It follows from Lemma 2.7, p. 372, in [1] that $\tau(A)$ is dense in A. It is now easy to see that tr is a positive linear functional on $\tau(A)$ such that tr $a^* = \text{tr } a^-$ and tr(xy) = tr(yx) for all $a \in \tau(A)$ and $x, y \in A$.

Now we define $\tau(a) = \text{tr}[a]$. Then $\tau(a^*a) = \text{tr}(a^*a) = ||a||^2$ for all $a \in A$. To show that $\tau()$ is a norm on $\tau(A)$ and to verify other properties of it we need the following two lemmas.

LEMMA 4. If $a \in \tau(A)$ and S is a right centralizer then $|\operatorname{tr}(S[a])| \le ||S||\tau(a)$.

PROOF. Let b be a positive member of A such that $b^2 = [a]$. Then $|\operatorname{tr}(S[a])| = |\operatorname{tr}(Sb^2)| = |(Sb, b)| \le ||S|| \cdot ||b||^2 = ||S|| \tau(b^*b) = ||S|| \tau(a)$.

COROLLARY 2. $|\operatorname{tr} a| \leq \tau(a)$ for each $a \in \tau(A)$.

PROOF. Let W be a partial isometry associated with a. Then $|\operatorname{tr}(a)| = |\operatorname{tr}(W[a])| \le ||W|| \cdot \tau(a) = \tau(a)$.

LEMMA 5. If a and S are as in Lemma 4 then $\tau(Sa) \leq ||S|| \tau(a)$.

PROOF. Let W_1 , W_2 be partial isometries associated with Sa and a respectively $(W_1, W_2 \text{ are right centralizers of norm 1 such that } W_1[Sa] = Sa$, $W_2[a] = a$). Then

$$\tau(Sa) = \operatorname{tr}[Sa] = |\operatorname{tr}(W_1^*SW_2[a])| \leq ||W_1^*SW_2||\tau(a)$$

$$\leq ||W_1^*|| \cdot ||S|| \cdot ||W_2|| \cdot \tau(a) = ||S||\tau(a).$$

COROLLARY 3. If $a \in \tau(A)$ then $||a|| \leq \tau(a)$.

PROOF. First note that the operator $La^*:x\to a^*x$ is a right centralizer and that $||La^*|| \le ||a^*||$ (since $||a^*x|| \le ||a^*|| \cdot ||x||$ for each $x \in A$). Thus:

$$||a||^2 = \tau(a^*a) = \tau(La^*(a)) \le ||La^*|| \cdot \tau(a) \le ||a^*|| \cdot \tau(a) = ||a||\tau(a);$$

hence $||a|| \le \tau(a)$.

COROLLARY 4. If $a, b \in A$ then $\tau(ab) \leq ||a|| \cdot ||b||$ and if $a, b \in \tau(A)$ then $\tau(ab) \leq \tau(a)\tau(b)$.

PROOF. Let W be a partial isometry associated with ab. Then

$$\tau(ab) = \text{tr}[ab] = \text{tr}(W^*ab) = (W^*a, b^*)$$

$$\leq ||W^*|| \cdot ||a|| \cdot ||b^*|| = ||a|| \cdot ||b|| \leq \tau(a) \cdot \tau(b).$$

4. Now we can state our main result.

THEOREM. Let A be a proper H^* -algebra and let $\tau(A)$ be the set of all products xy of members x, y of A. Then $\tau(A)$ coincides with the set of those members a of A for which the series $\sum_{\alpha}([a]e_{\alpha}, e_{\alpha})$ converges for some projection base $\{e_{\alpha}\}$ of A. If $a \in \tau(A)$ then this series converges (absolutely) for each projection base $\{e_{\alpha}\}$ and the sum $\tau(a) = \sum_{\alpha}([a]e_{\alpha}, e_{\alpha})$ does not depend on a particular choice of $\{e_{\alpha}\}$. There is a positive linear functional tr defined on $\tau(A)$ such that $\operatorname{tr}(xy) = (y, x^*) = (x, y^*) = \operatorname{tr}(yx)$ for all $x, y \in A$ and $\operatorname{tr} a = \sum_{\alpha}(ae_{\alpha}, e_{\alpha})$ for each $a \in \tau(A)$ and each projection base $\{e_{\alpha}\}$. The trace-class $\tau(A)$ is a two-sided ideal in A, dense in A and closed under the involution and right centralizers. In fact $\tau(A)$ is a normed algebra with respect to the norm $\tau(a) = \operatorname{tr}[a] = \sum_{\alpha} ([a]e_{\alpha}, e_{\alpha})$, which has the property that $|\operatorname{tr} a| \leq \tau(a), ||a|| \leq \tau(a)$ and $\tau(ab) \leq \tau(a)\tau(b)$ for all $a, b \in \tau(A)$.

In the next paper it will be shown that $\tau(A)$ is complete, i.e. $\tau(A)$ is a Banach algebra.

We would like to thank the referee for his helpful suggestions.

REFERENCES

- 1. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 7, 126.
- 2. C. N. Kellogg, Centralizers and H*-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749.
- 3. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883.
- 4. C. E. Rickart, General theory of Banach algebras, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- 5. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878.

CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D. C. 20017

LORAS COLLEGE, DUBUQUE, IOWA 52001