TRACE-CLASS AND CENTRALIZERS OF AN H*-ALGEBRA¹

PARFENY P. SAWOROTNOW

ABSTRACT. Let A be a proper H^* -algebra. Let $\tau(A) = \{xy \mid x, y \in A\}$, let R(A) be the set of all bounded linear operators S on A such that S(xy) = (Sx)y for all $x, y \in A$ and let C(A) be the closed subspace of R(A) generated by the operators of the form $La: x \to ax$, $a \in A$. It is shown that $\tau(A)$ can be identified with the space of all bounded linear functionals on C(A) and that R(A) is the dual of $\tau(A)$. Also it is proved that $\tau(A)$ is a Banach algebra.

This paper is a continuation of [4]. It generalizes Theorems 2, 3 on pp. 47, 48 of [6]. These theorems state that the trace-class (τc) of operators on a Hilbert space H can be identified with the set of all bounded linear functionals on the ideal of completely continuous operators on H and that the dual of (τc) is essentially the set of all bounded operators on H.

A consequence of the generalization of the first fact is the completeness of the trace-class $\tau(A)$ for an arbitrary proper H^* -algebra A.

Let A be a proper H^* -algebra [1]. We define R(A) to be the set of all right centralizers on A [2] (R(A)) is the set of all bounded operators S on A such that S(xy) = (Sx)y for all $x, y \in A$). We define C(A) to be the closed subspace of R(A) generated by the operators $La: x \to ax$, $a \in A$, acting on A; C(A) is the closure in the operator norm of the set $\{La \mid a \in A\}$.

For each $a \in \tau(A)$ consider the mapping f_a on C(A) defined by $f_a(S) = \operatorname{tr}(Sa)$, $S \in C(A)$. Then $|f_a(S)| = |\operatorname{tr}(Sa)| \leq \tau(Sa) \leq ||S||\tau(a)$ for each $S \in C(A)$ [4, Lemma 5] and so f_a is a bounded linear functional on C(A) with $||f_a|| \leq \tau(a)$. The converse inequality also holds:

LEMMA. If $a \in \tau(A)$ then the mapping $f_a : S \to \operatorname{tr}(Sa)$, defined on C(A), is a bounded linear functional and $||f_a|| = \tau(a)$.

PROOF. We only need to prove that $\tau(a) \leq ||f_a||$. Let $\{e_n\}$ and $\{\mu_n\}$ be respectively a sequence of mutually orthogonal projections and a sequence of positive numbers such that $[a] = \sum_{n=1}^{\infty} \mu_n e_n$ and

Presented to the Society, August 31, 1967; received by the editors August 15, 1968 and, in revised form, October 17, 1969.

AMS 1969 subject classifications. Primary 4650, 4660; Secondary 4615.

Key words and phrases. Trace-class, H*-algebra, dual, centralizer, right centralizer, bounded linear functional.

¹ Research supported by the National Science Foundation Grant GP-7620.

 $[a]e_k = e_k[a] = \mu_k e_k$ for each k (see the definition of [a] in [4] (before Lemma 2)).

For each n let $c_n = \sum_{k=1}^n e_k$; then $Lc_n \in C(A)$, $||Lc_n|| = 1$ and

$$f[a](Lc_n) = \operatorname{tr}(Lc_n([a])) = \operatorname{tr}(c_n[a]) = \operatorname{tr}\left(\sum_{k=1}^n e_k[a]\right)$$
$$= \operatorname{tr}\left(\sum_{k=1}^n \mu_k e_k\right) = \sum_{k=1}^n \mu_k \operatorname{tr}(e_k) = \sum_{k=1}^n \mu_k(e_k, e_k).$$

Thus we have:

$$\sum_{k=1}^{n} \mu_{k}(e_{k}, e_{k}) = |f[a](Lc_{n})| \leq ||f[a]|| \cdot ||Lc_{n}|| = ||f[a]||.$$

It follows that

$$\tau(a) = \text{tr}[a] = \sum_{k=1}^{\infty} ([a]e_k, e_k) = \sum_{k=1}^{\infty} \mu_k(e_k, e_k) \leq ||f[a]||,$$

and so we only have to show now that $||f[a]|| \le ||f_a||$.

Let W be the partial isometry associated with a (see definition of W in [4] after Lemma 2). Then W, W^* are right centralizers of norm 1, W[a] = a, $W^*a = [a]$ and we have for each $S \in C(A)$:

$$|f[a](S)| = |\operatorname{tr}(S[a])| = |\operatorname{tr}(SW^*a)| = |f_a(SW^*)|$$

$$\leq ||f_a|| \cdot ||SW^*|| \leq ||f_a|| \cdot ||S|| \cdot ||W^*|| \leq ||f_a|| \cdot ||S||.$$

This simply means that $||f[a]|| \le ||f_a|| \dots$

THEOREM 1. Each bounded linear functional on C(A) is of the form f_a for some $a \in \tau(A)$. The correspondence $a \leftrightarrow f_a$ is an isometric isomorphism between $\tau(A)$ and $C(A)^*$.

PROOF. The fact that the mapping $a \rightarrow f_a$ is one-to-one is easy to verify: if $f_a = f_b$ then the equality $(a, x^*) = \operatorname{tr}(xa) = \operatorname{tr}(Lx(a)) = f_a(Lx) = f_b(Lx) = \operatorname{tr}(xb) = (b, x^*)$ holds for each $x \in A$, and this means that a = b.

To prove that the mapping $a o f_a$ is onto, we use Riesz' Theorem about linear functionals on a Hilbert space. Let f be a bounded linear functional on C(A). Then the mapping x o f(Lx) is a bounded linear functional on A since $|f(Lx)| leq ||f|| \cdot ||Lx|| leq ||f|| \cdot ||x||$ (note that ||Lx|| leq ||x|| for each x leq A). Hence there exists a leq A such that $f(Lx) = (x, a^*)$ for all x leq A. Then $f(Lx) = (x, a^*) = \operatorname{tr}(ax) = \operatorname{tr}(xa) = \operatorname{tr}(Lx(a))$ for each x leq A. If we could show that $a leq \tau(A)$ this would imply that f is of the form $f = f_a$.

So let $\{e_n\}$, $\{\mu_n\}$ and W be as in the above lemma $(a^*a = \sum_n \mu_n^2 e_n, [a] = \sum_n \mu_n e_n, \quad W[a] = a, \quad W^*a = [a] \quad \text{and} \quad Wx = \sum_n \mu_n^{-1} a e_n x, \quad W^*x = \sum_n \mu_n^{-1} e_n a^*x$ for each $x \in A$) (see discussion following Lemma 2 in [4]). For each n let $c_n = \sum_{k=1}^n e_k, d_n = \sum_{k=1}^n \mu_k^{-1} e_k a^*$. Then

$$Ld_n(x) = d_n x = \sum_{k=1}^n \mu_k^{-1} e_k a^* x = c_n \sum_{k=1}^\infty \mu_k^{-1} e_k a^* x = Lc_n(W^* x)$$

and so $||Ld_n(x)|| = ||Lc_n(W^*x)|| \le ||Lc_n|| \cdot ||W^*|| \cdot ||x|| \le ||x||$, which means that $||Ld_n|| \le 1$. Then we have for each n:

$$\sum_{k=1}^{n} \mu_{k}(e_{k}, e_{k}) = \sum_{k=1}^{n} \mu_{k} \operatorname{tr}(e_{k}) = \left| \operatorname{tr} \left(\sum_{k=1}^{n} \mu_{k} e_{k} \right) \right| = \left| \operatorname{tr} \left(\sum_{k=1}^{n} \mu_{k}^{-1} e_{k} a^{*} a \right) \right|$$

$$= \left| \operatorname{tr}(d_{n} a) \right| = \left| \operatorname{tr}(L d_{n}(a)) \right| = \left| f(L d_{n}) \right|$$

$$\leq \left| |f| \cdot \left| L d_{n} \right| = \left| |f| \right|.$$

This simply means that the series $\sum_{k=1}^{\infty} \mu_k(e_k, e_k)$ converges, $b = \sum_{k} (\mu_k)^{1/2} e_k$ belong to A and $[a] = b^2$ belongs to $\tau()$.

COROLLARY. $\tau(A)$ is a Banach algebra in the norm $\tau(A)$.

PROOF. $\tau(A)$ is complete since it is isometric to the dual of C(A) (see 8A in [3]).

THEOREM 2. For each $S \in R(A)$ the mapping $f_S: x \to \operatorname{tr}(Sx)$, $f_S(x) = \operatorname{tr}(Sx)$, is a bounded linear functional on $\tau(A)$ such that $||f_S|| = ||S||$. Conversely, each bounded linear functional on $\tau(A)$ is of the form f_S for some $S \in R(A)$. Thus R(A) is isomorphic and isometric to the space $\tau(A)^*$ of bounded linear functionals on $\tau(A)$.

PROOF. Inequality $|\operatorname{tr}(Sx)| \leq ||S|| \cdot \tau(x)$ (Lemma 5 in [4]) implies that f_S is a bounded linear functional on $\tau(A)$ and that $||f_S|| \leq ||S||$. To establish the converse inequality we select for a given $\epsilon > 0$ a member $a \in A$ with ||a|| = 1 such that $||S^*||^2 - \epsilon \leq ||S^*a||^2$ and then consider:

$$||S^*||^2 - \epsilon \le ||S^*a||^2 = (S^*a, S^*a) = ||(SS^*a, a)|| = ||\operatorname{tr}(SS^*(aa^*))||$$

$$= ||\operatorname{tr}(S(S^*aa^*))|| = ||f_S(S^*aa^*)||$$

$$\le ||f_S|| \cdot \tau(S^*(aa^*)) \le ||f_S|| \cdot ||S^*|| \cdot \tau(aa^*)$$

$$= ||f_S|| \cdot ||S^*|| \operatorname{tr}(aa^*)$$

$$= ||f_S|| \cdot ||S^*|| \cdot ||a||^2 = ||f_S|| \cdot ||S^*||.$$

Since this is valid for each $\epsilon > 0$ we have: $||S|| = ||S^*|| \le ||f_S||$.

Now let $f \in \tau(A)^*$. For a fixed $a \in A$ the linear functional $g_a: x \to f(ax)$

is bounded on $A: |g_a(x)| = |f(ax)| \le ||f|| \tau(ax) \le ||f|| \cdot ||a|| \cdot ||x||$ (Corollary 4 in [4]) and so $||g_a|| \le ||f|| \cdot ||a||$. Hence there is a member b_a of A such that $f(ax) = g_a(x) = (x, b_a^*) = \operatorname{tr}(b_a x)$ for each $x \in A$ and $||b_a|| \le ||f|| \cdot ||a||$. Define the mapping S on A by setting $Sa = b_a$ for each $a \in A$. Then S is a bounded linear operator on S such that $||S|| \le ||f||$ and $\operatorname{tr}((Sa)x) = f(ax)$ for all $x, a \in A$. Let us show that S is a right centralizer. If $u, v \in A$ then we have for each $x \in A$:

$$(S(uv), x^*) = \operatorname{tr}(xS(uv)) = \operatorname{tr}((S(uv))x) = f((uv)x) = f(u(vx))$$

= $\operatorname{tr}(Su(vx)) = (Su, (vx)^*) = (Su, x^*v^*) = ((Su)v, x^*).$

Thus S(uv) = (Su)v...

It follows also that $f = f_S$: if a = uv for some u, $v \in A$ then $f(a) = f(uv) = tr(Su)v = tr(Su)v = tr(Su)v = tr(Sa) = f_S(a)$.

The author expresses his thanks to D. J. Gallo for pointing out to him the error in the previous proof of Theorem 2.

REFERENCES

- 1. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386. MR 7, 126.
- 2. C. N. Kellogg, Centralizers and H*-algebras, Pacific J. Math. 17 (1966), 121-129. MR 33 #1749.
- 3. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, Princeton, N. J., 1953. MR 14, 883.
- 4. P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proc. Amer. Math. Soc. 26 (1970), 95-100.
- 5. R. Schatten, The cross-space of linear transformations, Ann. of Math. (2) 47 (1946), 73-84. MR 7, 455.
- 6. —, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878.
- 7. R. Schatten and J. von Neumann, The cross-space of linear transformations. II, Ann. of Math. (2) 47 (1946), 608-630. MR 8, 31.

CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D. C. 20017