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Abstract. H. Mine has constructed an upper bound on the

permanent of any relation on a finite set. In this paper the perma-

nent of any transitive relation on a finite set is calculated. The work

in part is based upon the interpretation of a reflexive, transitive

relation as a finite topology. The relationship to (finite) Borel

fields is discussed briefly. In an example it is shown how results here

may be combined with Mine's inequality to produce an improved

upper bound on the permanent of any relation.

1. Introduction. Let S— \si, s2, ■ • -, s„} be a given finite set. A

relation a on 5 is a subset of 5X5 and will be identified with an

nXn (0, l)-matrix A= {a„} in which a<y=l iff (5„ 5y)Ga. In [l],

Mine established an upper bound on the permanent of any «X«

(0, l)-matrix A with row sums rlt r2, • ■ • , rn,

"   ri + 1
per(a) = per(^l) g YL —-

t=i        2

In [2], he improved the bound as follows

(1) Per(¿) è II TT—T •
,=1   1 + V2

We shall show that the bound (1) can be replaced by an exact

computation in the event that a is transitive. It was shown in [4]

that a reflexive, transitive relation corresponds to a topology on 5.

Our main results may be summarized:

per (a) =0 if a is transitive but not reflexive,

per (a) = 1 if a corresponds to a T0 topology,

per (a) —K>\ if a corresponds to a non-To topology. The evalua-

tion of K appears in Theorem 3.

In the final section we consider, briefly, arbitrary relations a.

For relations with several maximal row and column sums, (1) may

not be particularly close. Using the results above, we describe an

algorithm leading to a possible improvement in the bound given by

(1).
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2. Nonreflexive, transitive relations. Any reflexive relation

necessarily has permanent^ 1. A nonreflexive relation a (some pair

{sj, Sj)^a), however, may have permanent 0. This is the case in the

following transitive relation

"0   1   o-

0    10,

_1    1    1.

which provides a clue to Theorem 1.

Theorem 1. If a is a nonreflexive, transitive relation on S, then

per (a) = 0.

Proof. Let A = (ay) be the matrix corresponding to a. By hypo-

thesis there is an index v such that a„ = 0. Now assume that per(a)

^ 1 ; there is then at least one permutation on the subscripts such that

(2) aií1a2¿2 • • • a„in = 1.

Factor the permutation into a product of disjoint cycles, one of

which is of the form (i¡¡, • • • , im) where ik = v. Because of (2), the

transitivity of a implies that apq = 1 whenever p and q are in the

same cycle, in particular when p = q. Thus avv = i, contradicting the

hypothesis.

3. Reflexive, transitive relations. A reflexive, transitive relation

on 5 corresponds uniquely to a topology on S. To simplify notation

we shall represent each by the corresponding (0, l)-matrix T={ti¡),

i,j=í, 2, • • • , ».

Definition 1. Let T=(iy) and T* = (t*j) be topologies on S. The

operation O is defined by

TOT* = Y = (yy),       », j = 1,2, •••,«,

where yn = tijti] (Boolean product). The matrix TOT* is called the

core of T and 2"*.

Lemma 1. The core of two topologies on S is again a topology on S.

Proof. If TOT*=Y, we need to show that Y2=Y (Boolean

arithmetic) [4]. The (*', j)th entry in Y2 is zi}= X)y«yw= 2C*o*oMv-
If Zy=l, then for some k tik = tit = tkj=:tt}='i. Hence by transitivity

tij = ti] = yij = \. If Zy = 0, then for each k tatahjttj = 0. In particular,

for k = i tu = ta = 1, hence tntt¡ = y y = 0.

If (B and 03* are the minimal bases for the topologies T and T*,
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respectively, [4] then the nonempty members of the minimal basis

for the core topology TOT* are the sets BjC\B¡ .

Let T and T' denote transpose topologies [4]. We shall indicate

the core of T and T' by TQT'= Tc = (fi}), and we call it the sym-

metric core of T. It is clear that Tc is a symmetric topology and is the

matrix for an equivalence relation on S. Further, Tc is the identity

matrix / iff the topology T is T0 [4J.

Theorem 2. // T" is the symmetric core of T, then per(T) = per(Tc).

Proof. Let E\, E2, • ■ ■ , Em be the equivalence classes into which

Tc partitions 5. Consider an arbitrary term

(3) tlnt-Ui • • • t„in

in the expansion defining the permanent of T. For each subscript

pair (j, */)

if Sj and S{¡ are in the same equivalence class, then tjy = 1.

if s,- and s^ are in different equivalence classes, then tjijtijj = 0.

Now factor (3) into disjoint cycles, a typical factor being of the

form

(4) hik • • • tmim,

where im = k. By the transitivity of T, the product indicated in (4)

is 1 iff tkik = tikk = 1, • • • , tmim = timm = l. If each factor (cycle) involves

only subscripts corresponding to elements in a single equivalence

class, then tujtti • • • t„in = fHltc2ii • ■ • tenin=l. On the other hand, if

some factor (denoted as in (4)) involves a subscript pair correspond-

ing to elements in different equivalence classes, then tuk • ■ • im^,

= tetilc • • ■ tcm%m = 0. Thus for each term in the expansion defining the

permanent tUlt2h ■ ■ ■ tnin = \ iff 4/212 ■ ■ • 4„=L

Theorem 3. If Tc is the symmetric core of T and if E\, E2, ••-,£„,

are the equivalence classes into which Tc partitions S, then

m

per(D = II I Ek I !.
4=1

Proof. The symbol | Ek\ denotes the cardinal of Ek. By Theorem 2

we need to calculate per(P). The relation described by Tc is simply

U?_i£*X£*.Thus

per(Jc) = nPer(£4X£*) - f[ | Ek \ !.
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The following corollary is an immediate consequence of the remark

preceding the statement of Theorem 2.

Corollary. If T represents a To topology, then per(T) = per(J) = 1.

4. Borel fields. The previous sections show that the permanent of

any transitive relation depends upon the largest equivalence rela-

tion contained in it, being 0 unless that equivalence relation corre-

sponds to a symmetric core topology on 5. The symmetric core of a

topology T has an interpretation of interest in another context:

Tc is the Borel field generated by the topology T [3]. The results in

§2 of [3] are closely related to those in [4]. For example, the deter-

minant of T is 1 if the topology is T0 and is 0 otherwise. The deter-

minant associated with any Borel field is known, and the results here

show that the permanent associated with any Borel field on S is

also known.

5. Arbitrary relations. It is well known that the relation ß is

transitive iff ß2uß and the reflexive relation ß is transitive iff ß2 = ß.

Now let a be any relation on S with corresponding matrix A = (ay). It

is contained in a unique minimal transitive relation ß, which may be

found by the following iterative procedure. Define

2

AQ = A,       An = An_i+ An_!,    n > 0    (again Boolean arithmetic).

If k is the least integer such that Ai^Ak, then B = Ak is the matrix

corresponding to ß. Since A ^B, per(A) ^per(B), hence we have the

following corollary to Theorem 1.

Corollary. If the minimal transitive relation containing a is non-

reflexive, then per(a) =0.

Theorem 4. If the minimal transitive relation ß containing a is

reflexive, then {in matrix notation) per (A) = per {A OB OB').

Proof. By Theorem 2, per (B) = per (BOB'), and we recall from

that proof that this equality holds because a term in the expansion

of per(-B) is 0 or 1 iff the corresponding term in the expansion of

per(BQB') is the same. Since A=AOB,

per(A) = per(A O B) = per(.4 O B O B').

Essentially, this theorem simply provides an algorithm which may

be useful in deleting a part of A which does not contribute to the

permanent.

Example. Applying (1) directly to
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A =

"10 0 0 0 0'

11110 1

10 0 10 1

10 10 0 1

111111

.10   0    0   0 1.

yields per(^4) ^38. But in this case,

B -

1

1

1

1

1

Ll

0   0    0    0

1

0

0

1

0

0

0

1

0   0    0    0

and A O B O B' =

"10   0   0   0   0"

0 10 0 0 0

0 0 0 10 0

0 0 10 0 0

0 0 0 0 10

.000001.

hence by Theorem 4, (1) yields per(^4) i*l. In fact, per (.4) = 1.
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