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ON THE INVERTIBILITY OF GENERAL
WIENER-HOPF OPERATORS

JOHN REEDER

Abstract. Let $ be a separable Hilbert space, SB the set of

bounded linear operators on ^>, and P an orthogonal projection on

!q. Denote the range of P by R(P). Let A belong to SB. The general

Wiener-Hopf operator associated with A and P is defined by

Tp(A) =PA\R{P), the vertical bar denoting restriction. Let

Q = I—P. The purpose of this paper is to disprove the general con-

jecture that if A is an invertible element of SB, then the inverlibility of

Tp(A) implies the inverlibility of Tq(A). We also disprove the con-

jecture in an interesting special case.

1. Introduction. Let § be a separable Hilbert space, and 93 the

set of bounded linear operators on £>. Let P be an orthogonal pro-

jection on £>. Denote its range by R(P). Let A belong to 93. The

general Wiener-Hopf operator associated with A and P is defined by

Tp(A) = PA | R(P),

the vertical bar denoting restriction. Let Q = I—P. The purpose of

this paper is to disprove the general conjecture that if A is an in-

vertible element of 93, then the inverlibility of TP(A) implies the inverlibil-

ity of Tq(A). We also disprove the conjecture in an interesting

special case.

In §2 we mention some special cases in which the conjecture has

been proven true. We then exhibit a simple counterexample to prove

that the conjecture is, in general, false.

In order to discuss §3 we introduce some additional terminology.

Let P2(P; £>) denote the space of equivalence classes of ^»-valued,

weakly measurable functions on the circle group P which are square

summable; H2(T; !q) the subspace of P2(P; Jp) which consists of

those elements whose Fourier coefficients vanish on the negative

integers; and K2(T; £>) the orthogonal complement of H2(T; §) in

P2(P; £). P and Q are projections from P2(P; §) onto H2(T; §) and

P2(P; §) respectively. All operators are assumed to be bounded and

linear. Let .4(0) be any weakly measurable, essentially bounded, SB-

valued function on the circle group. We define an operator A on

P2(P;£)by
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iAf)i6) = A(ß)f(0),     f E L2iT; §),    0 6 T,

and two Wiener-Hopf operators by

TpÍA) = PA | H2iT; §),        TQ(A) = QA \ K2iT; &).

As usual, E denotes the complex numbers. Finally, suppose that the

operator A is invertible.

Devinatz and Shinbrot [l] have shown that if 77 is one-dimen-

sional, then TpiA) being invertible implies TqÍA) is invertible. They

remark: "Whether or not this result persists when the dimension of § is

greater than 1 is not known." (The remark follows proof of Corollary 8,

§6 in [l].) We shall prove that the result does not by exhibiting a

counterexample when the dimension of § is two (i.e. § = EXS). The

counterexample is of the form U*B U where U is a certain unitary

operator on L2iT; EXE) mapping 772(r; SXS) onto L2iT; E) X {o}

and K2iT; (5X6) onto {o} X72(7"; Ê), and B is an invertible operator

on L2iT; EXE) patterned after the counterexample of §2. This

counterexample may be generalized to disprove the result when the

dimension of § is any integer greater than one.

2. The first counterexample. Devinatz and Shinbrot have proven

that for a unitary operator U, the invertibility of TPiU) is equivalent

to that of TQiU) for any orthogonal projection P on § where Q = I—P

(Corollary 1, §2 in [l]). They have also shown that if A is any opera-

tor with a strongly positive real part (Re(^4x, x)^5(x, x), x£^>, 5

positive), then TpiA) is invertible for every orthogonal projection P.

In particular, it is invertible for Q = I—P (Lemma 2, §2 in [l]).

Pellegrini proved that for an operator A, TpiA) is invertible for every

orthogonal projection if and only if there exists a 6 between 0 and 2x

such that e^A has strongly positive real part (Theorem 1.2.10 in [2]).

The following simple counterexample illustrates that the invertibility

of TpiA) does not guarantee that of TqÍA), even if A is invertible.

Counterexample 1. Take ^) = EXS, P the projection from §

onto EX {o}, and Q = I-P. Let A be the matrix (} J). The deter-
minant of A is —1 so that A is invertible. It is easily seen that

rp04) = 7|Sx{o}andrgG4)=0| {o}xE.

3. The second counterexample. In this section P is the projection

from L2iT; EXE) onto 772(r; EXE) and Q = I-P; P' is the pro-
jection from L2(7; EXS) onto L2iT, S)X{0} and Q' = I-P'. We

shall construct an invertible operator A on L2iT\ SXE) such that

TpiA) is invertible but TqÍA) is not.
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Let [ , ] denote the inner product in both GiXfë and S; ( , ) the

inner product in both L2iT; 6 X 6) and L2(T; 6). Iff (6) EL2iT; <S X 6),
then / is easily seen to be of the form (/i(0), /2W) where /1,

/2GA2(r;(5). Letg(ö) = (gi(ff),gt(ff)) be another element of L2(r;SX(£).

The topology on L2(T; SXÊ) is determined by the inner product:

(3-D   (f,g)= f   ¡fie), gid)]de = f   [iflie),Me)), (gl(o), gi(e))]de.

We define inner product on (5 X 6 to be the sum of the respective inner

products. Thus, (3.1) becomes

<f,g)=f    [W), gM]dO +  (   [Í2Í6), gM\de
(3.2; J ser J «er

- (A. «i> + (A, »>•

This indicates that we may identify L2ifT; fëXfë) with L2(fT; S)

XL2iT; 6) where the inner product in the latter space is given by the

right-hand side of (3.2). Under this identification, H2iT; SXS) and

K2iT; 6XË) become H2iT; &)XH2iT; 6) and K2iT; S)XA2(r; 6)

respectively. We make this identification freely throughout the re-

mainder of the paper.

The Plancherel theorem says that the Fourier transform, F, is an

isometry from L2iT; (S) onto I2, the square-summable, 6-valued

sequences on the integers. The adjoint of F, F*, is easily seen to equal

F~*. We make use of these facts in the following lemma.

Lemma 1. There exists a unitary operator U on L2(T; SXË) such

that

(i) u=u*=u-\
(ii) c/(H2(r;ex(S))=A2(r;e)x{o},
(iii) [/(A2(r;sxe))={o}xA2(r;s).

Proof. For (/„), ign)El2, define a map G:Z2X/s->/2X¿2 by

GOfn),  ign))   -   Hhn),  (*.))

where

hn =}n, » è 0,

= g-n-i,       n < 0,

kn = f-n-1, « è  0,

= gn, » < 0.
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\\Giifn), ign))\\2 =   ¿Zfnfn +  ¿2 g-n-lg-n-1 +  z2 f-n-J-n-1 +  12 êngn

= I|(/»)||2+H(rf-
The inner product in Z2X/2 is taken to be the sum of the respective

inner products in I2, so that || ((/„), (gn))||2 = ||(/»)||2 + ||(g»)||2- Observe

that G is linear. Hence G is an isometry. Note that G2 = I, so that

G = G~l. Let h2Xh2ik2Xk2) denote the subspace of /2X/2 of series

whose terms vanish for negative (positive) indices. Observe that G

mapsA2X/i2onto¿2x{0} and k2Xk2onto {o} XI2.

Now we define a map H:L2iT; E)XL2(7; E)->/2X/2 via the

Fourier transform, F, as follows

Bif, g) = iFif), Fig)),       if, g) E L\T; S) X L\T; S),

\\Bif, g)\\2 = ||f(/)||2 + \\Fig)\\2 = ii/ii2 + y «.

Note that 77 is linear because F is linear. Hence 77 is an isometry. It

takes 772(r; E)X772(7; E) onto h2Xh2, K2iT; &)XK2iT; E) onto

k2Xk2, L2iT; E)X{0} onto l2X[o], and {o} XL2iT; 6) onto {o}

XI2. It is easily seen that 77* =77-*.

Finally, we set U=H~1GH. If we make the identification of

L2(7; EXE) with L2(7; E)XL2(r; E) mentioned earlier, then U

may be considered as an operator taking 7,2(7"; EXE) onto itself.

Now (ii) and (iii) follow immediately from the above mentioned prop-

erties of G and H. We prove (i) :

U* = H*G*iH'1)* = H-'GH = U,   U'1 = H^G^H = H~XGH = £/.>

The following operator is central to the forthcoming counterexample.

Its construction is patterned after that of Counterexample 1. Let

(3 3) (ö)    h*m

(buid) = buid) = b2ii&) = 1,
where    { 6 E T.

(buid) = bi

\b22id) = 0,2(ö)

Define

(3.4) iBfKO) = Bi0)fi6),       f E L2iT; E X S),    BET.

The properties of B which will be of interest to us are contained in the

following lemma.

Lemma 2. B is an invertible operator on L2iT; EXE) such that

ii)  Tp,iB)=l\L2iT;<i)x{0},
(ii)  7V(7i)=0|{0}X72(r;S).
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Proof. For any/£P2(P; 6X6) we have shown that /=(/i, f2)

where fi, f2EL2(T; 6). By (3.3), P(/i,/2) = (/i+/2,/i). Hence (i) and
(ii) follow immediately. It is easily seen that B~l(fi, f2) = (f2, fi—f2).

The fact that B and P_1 are bounded and linear is also easily shown.|

The following simple lemma is proven in a general context.

Lemma 3. Let U be a unitary operator on a Hilbert space §. Suppose

P and P' are two orthogonal projections on § such that U(R(P))

= R(P') and U(R(Q)) =R(Q') (Q = I-P, Q' = I-P'). Let B belong to
93. Then

(i) TP(U*BU) = U*Tp.(B)U\R(P),
(ii) TQ(U*BU) = U*TQ.(B)U\R(Q).

Proof. First we note that (P*P' U)2 = P*P' U, ( U*P' U)*= U*P'U,

and R(U*P'U)=R(P). Hence P= U*P'U. The rest is easy:

U*Tp.(B)U\ R(P) = U*(P'UU*B\R(P'))U\R(P)

= P(U*BU) | R(P) = Tp(U*BU).

The proof for TQ( U*B U) is identical-H

We are now prepared to exhibit the following counterexample.

Counterexample 2. There exists an invertible operator A on

L2(T; 6X6) such that TP(A)=l\H2(T; 6X6) and TQ(A) =
0|P2(P;6X6).

Proof. Let U he the operator of Lemma 1; B, that of Lemma 2;

and set A = U*BU. By Lemmas 1 and 2, A is an invertible operator

onP2(P; 6X6). Moreover, Lemma 3 says that

U*Tp.(B)U\ H2(T; 6X6) = TP(U*BU).

But Pp-(P)=/|P2(P; 6)X{0} by (i) of Lemma 2. Thus, using (i)

and (ii) of Lemma 1, we get that

Tp(A) = Tp(U*BU) = /| H2(T; 6 X 6).

Similarly, one sees that

rû(^) = rû(p*pp) = p*ro.(p)p|Pî(r;6x6) = 0|P2(r;6X6).H

References

1. A. Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer.

Math. Soc. 145 (1969), 467^94.
2. V. J. Pellegrini, Wiener-Hopf operators, Ph.D. Thesis, Northwestern Univer-

sity, Evanston, 111.

Northwestern University, Evanston, Illinois 60201


