ON THE INVERTIBILITY OF GENERAL WIENER-HOPF OPERATORS

JOHN REEDER

ABSTRACT. Let \mathfrak{H} be a separable Hilbert space, \mathfrak{H} the set of bounded linear operators on \mathfrak{H} , and P an orthogonal projection on \mathfrak{H} . Denote the range of P by R(P). Let A belong to \mathfrak{H} . The general Wiener-Hopf operator associated with A and P is defined by $T_P(A) = PA \mid R(P)$, the vertical bar denoting restriction. Let Q = I - P. The purpose of this paper is to disprove the general conjecture that if A is an invertible element of \mathfrak{H} , then the invertibility of $T_P(A)$ implies the invertibility of $T_Q(A)$. We also disprove the conjecture in an interesting special case.

1. Introduction. Let \mathfrak{F} be a separable Hilbert space, and \mathfrak{B} the set of bounded linear operators on \mathfrak{F} . Let P be an orthogonal projection on \mathfrak{F} . Denote its range by R(P). Let A belong to \mathfrak{F} . The general Wiener-Hopf operator associated with A and P is defined by

$$T_P(A) = PA \mid R(P),$$

the vertical bar denoting restriction. Let Q=I-P. The purpose of this paper is to disprove the general conjecture that if A is an invertible element of \mathfrak{B} , then the invertibility of $T_P(A)$ implies the invertibility of $T_Q(A)$. We also disprove the conjecture in an interesting special case.

In §2 we mention some special cases in which the conjecture has been proven true. We then exhibit a simple counterexample to prove that the conjecture is, in general, false.

In order to discuss §3 we introduce some additional terminology. Let $L^2(T; \mathfrak{H})$ denote the space of equivalence classes of \mathfrak{H} -valued, weakly measurable functions on the circle group T which are square summable; $H^2(T; \mathfrak{H})$ the subspace of $L^2(T; \mathfrak{H})$ which consists of those elements whose Fourier coefficients vanish on the negative integers; and $K^2(T; \mathfrak{H})$ the orthogonal complement of $H^2(T; \mathfrak{H})$ in $L^2(T; \mathfrak{H})$. P and Q are projections from $L^2(T; \mathfrak{H})$ onto $H^2(T; \mathfrak{H})$ and $K^2(T; \mathfrak{H})$ respectively. All operators are assumed to be bounded and linear. Let $A(\theta)$ be any weakly measurable, essentially bounded, \mathfrak{H} -valued function on the circle group. We define an operator A on $L^2(T; \mathfrak{H})$ by

Received by the editors January 16, 1970 and, in revised form, April 23, 1970. AMS 1969 subject classifications. Primary 4615, 4690; Secondary 4725. Key words and phrases. General Wiener-Hopf operators.

$$(Af)(\theta) = A(\theta)f(\theta), \quad f \in L^2(T; \mathfrak{H}), \quad \theta \in T,$$

and two Wiener-Hopf operators by

$$T_P(A) = PA \mid H^2(T; \mathfrak{H}), \qquad T_Q(A) = QA \mid K^2(T; \mathfrak{H}).$$

As usual, & denotes the complex numbers. Finally, suppose that the operator A is invertible.

Devinatz and Shinbrot [1] have shown that if H is one-dimensional, then $T_P(A)$ being invertible implies $T_Q(A)$ is invertible. They remark: "Whether or not this result persists when the dimension of $\mathfrak F$ is greater than 1 is not known." (The remark follows proof of Corollary 8, $\mathfrak F$ in [1].) We shall prove that the result does not by exhibiting a counterexample when the dimension of $\mathfrak F$ is two (i.e. $\mathfrak F = \mathfrak E \times \mathfrak E$). The counterexample is of the form U^*BU where U is a certain unitary operator on $L^2(T; \mathfrak E \times \mathfrak E)$ mapping $H^2(T; \mathfrak E \times \mathfrak E)$ onto $L^2(T; \mathfrak E \times \mathfrak E)$ and $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the counterexample of $L^2(T; \mathfrak E \times \mathfrak E)$ patterned after the none.

2. The first counterexample. Devinatz and Shinbrot have proven that for a unitary operator U, the invertibility of $T_P(U)$ is equivalent to that of $T_Q(U)$ for any orthogonal projection P on $\mathfrak F$ where Q=I-P (Corollary 1, $\S 2$ in [1]). They have also shown that if A is any operator with a strongly positive real part $(\operatorname{Re}(Ax, x) \geq \delta(x, x), x \in \mathfrak F, \delta$ positive), then $T_P(A)$ is invertible for every orthogonal projection P. In particular, it is invertible for Q=I-P (Lemma 2, $\S 2$ in [1]). Pellegrini proved that for an operator A, $T_P(A)$ is invertible for every orthogonal projection if and only if there exists a θ between 0 and 2π such that $e^{i\theta}A$ has strongly positive real part (Theorem 1.2.10 in [2]). The following simple counterexample illustrates that the invertibility of $T_P(A)$ does not guarantee that of $T_Q(A)$, even if A is invertible.

COUNTEREXAMPLE 1. Take $\mathfrak{H} = \mathfrak{C} \times \mathfrak{C}$, P the projection from \mathfrak{H} onto $\mathfrak{C} \times \{0\}$, and Q = I - P. Let A be the matrix $\binom{1}{1}$. The determinant of A is -1 so that A is invertible. It is easily seen that $T_P(A) = I | \mathfrak{C} \times \{0\}$ and $T_O(A) = 0 | \{0\} \times \mathfrak{C}$.

3. The second counterexample. In this section P is the projection from $L^2(T; \mathbb{C} \times \mathbb{C})$ onto $H^2(T; \mathbb{C} \times \mathbb{C})$ and Q = I - P; P' is the projection from $L^2(T; \mathbb{C} \times \mathbb{C})$ onto $L^2(T, \mathbb{C}) \times \{0\}$ and Q' = I - P'. We shall construct an invertible operator A on $L^2(T; \mathbb{C} \times \mathbb{C})$ such that $T_P(A)$ is invertible but $T_Q(A)$ is not.

Let [,] denote the inner product in both $\mathbb{C} \times \mathbb{C}$ and \mathbb{C} ; \langle , \rangle the inner product in both $L^2(T; \mathbb{C} \times \mathbb{C})$ and $L^2(T; \mathbb{C})$. If $f(\theta) \in L^2(T; \mathbb{C} \times \mathbb{C})$, then f is easily seen to be of the form $(f_1(\theta), f_2(\theta))$ where f_1 , $f_2 \in L^2(T; \mathbb{C})$. Let $g(\theta) = (g_1(\theta), g_2(\theta))$ be another element of $L^2(T; \mathbb{C} \times \mathbb{C})$. The topology on $L^2(T; \mathbb{C} \times \mathbb{C})$ is determined by the inner product:

$$(3.1) \quad \langle f, g \rangle = \int_{a \in \pi} [f(\theta), g(\theta)] d\theta = \int_{a \in \pi} [(f_1(\theta), f_2(\theta)), (g_1(\theta), g_2(\theta))] d\theta.$$

We define inner product on $\mathbb{C} \times \mathbb{C}$ to be the sum of the respective inner products. Thus, (3.1) becomes

(3.2)
$$\langle f, g \rangle = \int_{\theta \in T} [f_1(\theta), g_1(\theta)] d\theta + \int_{\theta \in T} [f_2(\theta), g_2(\theta)] d\theta$$

$$= \langle f_1, g_1 \rangle + \langle f_2, g_2 \rangle.$$

This indicates that we may identify $L^2(T; \mathfrak{C} \times \mathfrak{C})$ with $L^2(T; \mathfrak{C}) \times L^2(T; \mathfrak{C})$ where the inner product in the latter space is given by the right-hand side of (3.2). Under this identification, $H^2(T; \mathfrak{C} \times \mathfrak{C})$ and $K^2(T; \mathfrak{C} \times \mathfrak{C})$ become $H^2(T; \mathfrak{C}) \times H^2(T; \mathfrak{C})$ and $K^2(T; \mathfrak{C}) \times K^2(T; \mathfrak{C})$ respectively. We make this identification freely throughout the remainder of the paper.

The Plancherel theorem says that the Fourier transform, F, is an isometry from $L^2(T; \mathbb{C})$ onto l^2 , the square-summable, \mathbb{C} -valued sequences on the integers. The adjoint of F, F^* , is easily seen to equal F^{-1} . We make use of these facts in the following lemma.

LEMMA 1. There exists a unitary operator U on $L^2(T; \mathbb{C} \times \mathbb{C})$ such that

- (i) $U = U^* = U^{-1}$.
- (ii) $U(H^2(T; \mathbb{C} \times \mathbb{C})) = L^2(T; \mathbb{C}) \times \{0\},$
- (iii) $U(K^2(T; \mathbb{C} \times \mathbb{C})) = \{0\} \times L^2(T; \mathbb{C}).$

PROOF. For (f_n) , $(g_n) \in l^2$, define a map $G: l^2 \times l^2 \rightarrow l^2 \times l^2$ by

$$G((f_n), (g_n)) = ((h_n), (k_n))$$

where

$$h_n = f_n, n \ge 0,$$

$$= g_{-n-1}, n < 0,$$

$$k_n = f_{-n-1}, n \ge 0,$$

$$||G((f_n), (g_n))||^2 = \sum_{n} f_n \bar{f}_n + \sum_{n} g_{-n-1} \bar{g}_{-n-1} + \sum_{n} f_{-n-1} \bar{f}_{-n-1} + \sum_{n} g_n \bar{g}_n$$
$$= ||(f_n)||^2 + ||(g_n)||^2.$$

The inner product in $l^2 \times l^2$ is taken to be the sum of the respective inner products in l^2 , so that $\|((f_n), (g_n))\|^2 = \|(f_n)\|^2 + \|(g_n)\|^2$. Observe that G is linear. Hence G is an isometry. Note that $G^2 = I$, so that $G = G^{-1}$. Let $h^2 \times h^2(k^2 \times k^2)$ denote the subspace of $l^2 \times l^2$ of series whose terms vanish for negative (positive) indices. Observe that G maps $h^2 \times h^2$ onto $l^2 \times \{0\}$ and $k^2 \times k^2$ onto $\{0\} \times l^2$.

Now we define a map $H:L^2(T; \mathbb{C}) \times L^2(T; \mathbb{C}) \rightarrow l^2 \times l^2$ via the Fourier transform, F, as follows

$$H(f, g) = (F(f), F(g)), (f, g) \in L^{2}(T; \mathbb{S}) \times L^{2}(T; \mathbb{S}),$$
$$||H(f, g)||^{2} = ||F(f)||^{2} + ||F(g)||^{2} = ||f||^{2} + ||g||^{2}.$$

Note that H is linear because F is linear. Hence H is an isometry. It takes $H^2(T; \mathbb{C}) \times H^2(T; \mathbb{C})$ onto $h^2 \times h^2$, $K^2(T; \mathbb{C}) \times K^2(T; \mathbb{C})$ onto $h^2 \times h^2$, $h^2 \times h^2$, $h^2 \times h^2$, $h^2 \times h^2$, and $h^2 \times h^2$ onto $h^2 \times h^2$. It is easily seen that $h^2 = H^{-1}$.

Finally, we set $U=H^{-1}GH$. If we make the identification of $L^2(T; \mathbb{C} \times \mathbb{C})$ with $L^2(T; \mathbb{C}) \times L^2(T; \mathbb{C})$ mentioned earlier, then U may be considered as an operator taking $L^2(T; \mathbb{C} \times \mathbb{C})$ onto itself. Now (ii) and (iii) follow immediately from the above mentioned properties of G and H. We prove (i):

$$U^* = H^*G^*(H^{-1})^* = H^{-1}GH = U, \quad U^{-1} = H^{-1}G^{-1}H = H^{-1}GH = U.$$

The following operator is central to the forthcoming counterexample. Its construction is patterned after that of Counterexample 1. Let

(3.3)
$$B(\theta) = \begin{pmatrix} b_{11}(\theta) & b_{12}(\theta) \\ b_{21}(\theta) & b_{22}(\theta) \end{pmatrix}$$
where
$$\begin{cases} b_{11}(\theta) = b_{12}(\theta) = b_{21}(\theta) = 1, \\ b_{22}(\theta) = 0. \end{cases} \quad \theta \in T.$$

Define

$$(3.4) (Bf)(\theta) = B(\theta)f(\theta), f \in L^2(T; \mathbb{C} \times \mathbb{C}), \theta \in T.$$

The properties of B which will be of interest to us are contained in the following lemma.

LEMMA 2. B is an invertible operator on $L^2(T; \mathbb{C} \times \mathbb{C})$ such that

- (i) $T_{P'}(B) = I | L^2(T; \mathfrak{C}) \times \{0\},$
- (ii) $T_{Q'}(B) = 0 | \{0\} \times L^2(T; \mathfrak{C}).$

PROOF. For any $f \in L^2(T; \mathfrak{C} \times \mathfrak{C})$ we have shown that $f = (f_1, f_2)$ where $f_1, f_2 \in L^2(T; \mathfrak{C})$. By (3.3), $B(f_1, f_2) = (f_1 + f_2, f_1)$. Hence (i) and (ii) follow immediately. It is easily seen that $B^{-1}(f_1, f_2) = (f_2, f_1 - f_2)$. The fact that B and B^{-1} are bounded and linear is also easily shown.

LEMMA 3. Let U be a unitary operator on a Hilbert space \mathfrak{F} . Suppose P and P' are two orthogonal projections on \mathfrak{F} such that U(R(P)) = R(P') and U(R(Q)) = R(Q') (Q = I - P, Q' = I - P'). Let B belong to \mathfrak{B} . Then

- (i) $T_P(U^*BU) = U^*T_{P'}(B)U|R(P)$,
- (ii) $T_{o}(U^{*}BU) = U^{*}T_{o}(B)U|R(O)$.

PROOF. First we note that $(U^*P'U)^2 = U^*P'U$, $(U^*P'U)^* = U^*P'U$, and $R(U^*P'U) = R(P)$. Hence $P = U^*P'U$. The rest is easy:

$$U^*T_{P'}(B)U \mid R(P) = U^*(P'UU^*B \mid R(P'))U \mid R(P)$$

= $P(U^*BU) \mid R(P) = T_P(U^*BU)$.

The proof for $T_{\mathcal{Q}}(U^*BU)$ is identical.

We are now prepared to exhibit the following counterexample.

COUNTEREXAMPLE 2. There exists an invertible operator A on $L^2(T; \mathbb{C} \times \mathbb{C})$ such that $T_P(A) = I | H^2(T; \mathbb{C} \times \mathbb{C})$ and $T_Q(A) = 0 | K^2(T; \mathbb{C} \times \mathbb{C})$.

PROOF. Let U be the operator of Lemma 1; B, that of Lemma 2; and set $A = U^*BU$. By Lemmas 1 and 2, A is an invertible operator on $L^2(T; \mathbb{C} \times \mathbb{C})$. Moreover, Lemma 3 says that

$$U^*T_{P'}(B)U \mid H^2(T; \mathbb{C} \times \mathbb{C}) = T_P(U^*BU).$$

But $T_{P'}(B) = I \mid L^2(T; \mathfrak{C}) \times \{0\}$ by (i) of Lemma 2. Thus, using (i) and (ii) of Lemma 1, we get that

$$T_P(A) = T_P(U^*BU) = I \mid H^2(T; \mathfrak{C} \times \mathfrak{C}).$$

Similarly, one sees that

$$T_{\mathcal{Q}}(A) = T_{\mathcal{Q}}(U^*BU) = U^*T_{\mathcal{Q}'}(B)U \mid K^2(T; \mathbb{C} \times \mathbb{C}) = 0 \mid K^2(T; \mathbb{C} \times \mathbb{C}).$$

REFERENCES

- 1. A. Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145 (1969), 467-494.
- 2. V. J. Pellegrini, Wiener-Hopf operators, Ph.D. Thesis, Northwestern University, Evanston, Ill.

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201