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Abstract. A transformation group is nearly equicontinuous if

the set of nonequicontinuous points is zero dimensional and com-

pact. It has been shown that if a transformation group is nearly

equicontinuous with locally compact, locally connected metric

phase space and if the set of equicontinuous points is connected,

then the set N of nonequicontinuous points can contain at most

two minima! sets. In this paper we will show that if in addition the

phase space is not compact, then N contains exactly one minimal

set.

The purpose of this paper is to prove an additional theorem related

to results in [3]. This theorem shows what happens when the phase

space of [3] is assumed to be not compact. This result, in particular

Corollary 3, is related to the results in [5] and [ó]. Notation and

definitions are as in the book [2 ]. All topological spaces considered are

assumed to be Hausdorff.

Theorem. Let (A, T, it) be a transformation group such that X is a

locally compact, locally connected metric space which is not compact, the

set E of all points of X at which T is equicontinuous is connected, and

the set N = X — E is zero dimensional and compact. Then N contains

exactly one minimal set ithat is, a nonempty set which is the orbit closure

of each of its points).

This theorem will be proved by applying the theorem in [3] to the

one-point compactification of X. The following remarks, which are

known for the most part, show that the hypothesis of the theorem in

[3] are satisfied.

Remark 1. Let (A, T, w) be a transformation group where X is

locally compact. Then (X, T, t) is a transformation group where X

is the one-point compactification of X and (x, t)i- = x for each t in T

and (x, 1)0- = (x, t)ir for each x in X and / in T. Here x is the one point

added to make X compact.

Proof. The first two axioms are trivial. That r is continuous

follows from 1.18 (4) of [2].
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Remark 2. Under the assumption of the theorem X and X are

connected.

Proof. E is dense in X and connected and the result follows.

Remark 3. Under the assumption of the theorem X is metrizable.

Proof. This follows from the fact that X is connected and the

following theorems [l, Theorems XI.7.3, XI.7.2, IX.5.6, XI.8.6].
Remark 4. If (X, T, it) is a transformation group, if U and V are

compatible uniformities of X, if xEX and if cl(xP) is compact, then x

is equicontinuous with respect to U if and only if x is equicontinuous

with respect to V.

Proof. Use the Lesbesgue covering lemma for a compact subset

of a uniform space.

Remark 5. If A is a locally compact space, then the uniformity of

its one-point compactification X induces on X the least uniformity

compatible with the topology of X.

Remark 6. Let (X, T, tr) he a transformation group where X is

locally compact. Let P be the set of equicontinuous points of X and

Ñ = X-E. If N is compact, then NEÑ and PCP.
Proof. The first statement follows from Remark 4 and the second

from Remark 5.

Remark 7. If X is locally compact, connected and locally con-

nected, then X is locally connected.

Proof. This follows from [4, Theorem 3.9].

Remark 8. Under the assumption of the theorem x is in Ñ.

Proof. This follows from property (4) on p. 62 of [3 ] (which shows

that no equicontinuous point can be fixed).

It is easy to see from the above remarks that (X, T, x) satisfies the

conditions of the theorem in [3], and that {x} is minimal in Ñ.

Therefore N can contain at most one minimal set in order that Ñ will

contain at most two. But [2, Theorem 2.22] implies N must contain

at least one minimal set. Therefore, N contains exactly one minimal

set.

In the following corollaries the hypothesis of the theorem is as-

sumed.

Corollary 1. If xi and x2 belong to X, then cl(xiP)P\cl(xiP) is

not empty.

Proof. If xEE, then we know from [3] that cl(xP)DA. If x£A,

then we know from [2, Theorem 2.22] that cl(xP) contains a minimal

set. In either case cl(xT) must contain the minimal set of N.

Corollary 2. If T is almost periodic at each point of N, then N is

minimal.
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Corollary 3. If T is abelian or connected, then N contains exactly

one point and this point is fixed under T.

Corollaries 2 and 3 follow in the same way as Corollaries 2 and 3 of

[3].
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