INERTIAL AND BORDISM PROPERTIES OF SPHERES

ALLAN BRENDER¹

ABSTRACT. The k-connective bounding group $\theta^n(k)$ and the k-connective inertial group $I^n(k)$ are defined as subgroups of θ^n , the group of smooth n-spheres, $n \ge 7$. It is shown $I^n(k)$ is contained in $\theta^n(k)$. Consequently, the image of the Milnor-Novikov pairing $\tau_{n,k}$ is contained in $\theta^{n+k}(k)$ when $n \ge k+2$. It follows that $\tau_{7,3}=0$.

1. Introduction. Let θ^n be the group of oriented diffeomorphism classes of manifolds homeomorphic to the usual n-sphere, S^n . Assume $n \ge 7$. Define $\theta^n(k)$ to be the subgroup of θ^n consisting of those Σ^n which are the boundaries of k-connected (n+1)-dimensional compact manifolds, $1 \le k < \lfloor n/2 \rfloor$. Thus, $\theta^n(k)$ is the kernel of the natural map $i_k : \theta^n \to \Omega_n(k)$ where $\Omega_n(k)$ is the n-dimensional group in k-connective cobordism theory $\begin{bmatrix} \mathbf{10} \end{bmatrix}$ and i_k sends $\Sigma^n \in \theta^n$ to its cobordism class. Using surgery, we see $\Omega_*(1)$ is the usual oriented cobordism group so $\theta^n = \theta^n(1)$. Similarly, $\Omega_n(2) \approx \Omega_n^{\mathrm{spin}}$ (recall $n \ge 7$); since BSpin is, in fact, 3-connected, for $n \ge 8$ $\Omega_n(2) \approx \Omega_n(3)$ and $\theta^n(2) = \theta^n(3) = b$ Spin_n. Similarly, $\theta^n(k) = \theta^n(k+1)$ for $n \ge 2k+4$ and $k = 2, 4, 5, 6 \pmod{8}$. θ^n is filtered

$$\theta^n = \theta^n(1) \supset \theta^n(2) \supset \cdots \supset \theta^n(\lceil n/2 \rceil - 1) \supset \theta^n(\partial \pi).$$

The last inclusion is demonstrated in [5].

Let $I^n(k)$ be the group of those $\Sigma^n \in \theta^n$ such that for some k-connected closed manifold M^n , $M^n \notin \Sigma^n$ is diffeomorphic to M^n . All diffeomorphisms are assumed to preserve orientation. In the notation of [6], $\Sigma \in I(M)$, the inertia group of M. Our main result is

THEOREM. $I^n(k)$ is a subgroup of $\theta^n(k)$.

We postpone the proof to the next section. Wall [13] has proved this result when n=2m, k=m-1 with a different construction. In general, the groups of the theorem are not equal. This is discussed in §3.

Let $\tau_{n,k}:\theta^n\otimes\pi_k(SO(n-1))\to\theta^{n+k}$ be the Milnor-Munkres-Novikov pairing [7, p. 583], [4]. Munkres has shown [7, p. 577], [9] that if

Received by the editors October 17, 1969.

AMS 1969 subject classifications. Primary 5710.

Key words and phrases. k-connective cobordism, inertia group, exotic spheres.

¹ This research was supported in part by an I.I.T. Faculty Research Fellowship and by NSF contract GP-9614.

 M^{n+k} contains an embedded S^{k+1} with normal bundle having characteristic class $\alpha \in \pi_k(SO(n-1))$, then for any $\Sigma' \in \theta^n$, $\tau_{n,k}(\Sigma' \otimes \alpha) \in I(M)$. In particular, if M^{n+k} is the total space of the S^{n-1} -bundle over S^{k+1} with characteristic class $S\alpha$, $\alpha \in \pi_k(SO(n-2))$, $\tau_{n,k}(\theta^n \otimes \alpha) \subset I(M^{n+k})$. Thus we have

COROLLARY. If $n \ge k+2$, image $\tau_{n,k} \subset \theta^{n+k}(k)$.

De Sapio [4] has shown $\tau_{n,k}$ is trivial for $k \ge n-3$. We shall, therefore, always take $n \ge k+4$.

2. **Proof of the theorem.** Let $k \ge 2$. Let $\Sigma^n \in I^n(k)$ and assume $d: M\#\Sigma \to M$ is a diffeomorphism for some k-connected closed M^n . Let N be an elementary cobordism between the disjoint union $M \cup \Sigma$ and $M\#\Sigma$; N can be taken to be the connected sum along the boundaries $M \times \{1\}$ and $\Sigma \times \{1\}$ of $M \times I$ and $\Sigma \times I$. Since N has $M \cup \Sigma \cup_h D^1$ as a deformation retract, it is also k-connected. Choose p in M so that p has a small n-disc neighborhood U in M with $U \times I$ disjoint from the (n+1)-disc removed from $M \times I$ when forming N. We can assume $d \mid U \times \{1\}$ is the identity map d(u, 1) = u. Identify $x \in M\#\Sigma$ with $(d(x), 0) \in M \times \{0\} \subset N$ and let the resulting manifold be V^{n+1} . Then $bV^{n+1} = \Sigma^n$. $p \times I \subset N$ becomes an embedded circle C in V with trivial normal bundle $C \times U$. It is elementary that $\pi_1(V)$ is generated by $j_*\pi_1(S^1)$ where $j: S^1 \to C$ is the embedding. Regarding V as $N \cup M \times I$, the Mayer-Vietoris sequence gives

$$0 \to H_1(V) \to Z + Z \xrightarrow{\lambda} Z + Z \xrightarrow{\mu} Z \to 0$$

where $\lambda(m, n) = (m+n, -m-n)$. Thus $H_1(V) \approx \pi_1(V) \approx Z$. The class [j] is a generator. Moreover, the same Mayer-Vietoris sequence shows $H_i(V) = 0$, $2 \le i \le k$. Now, perform surgery on V by cutting out int $(C \times U)$ and attaching $D^2 \times S^{n-1}$ along the new boundary to obtain W^{n+1} which is also bounded by Σ^n . W is clearly simply connected and it is a simple matter to check, using $X = V \times I \cup_{\Phi} D^2 \times D^n$, the trace of the surgery, that W is, in fact, k-connected.

3. Remarks. We consider a few special cases and mention several known results concerning the groups $I^n(k)$ and $\theta^n(k)$.

In a strict sense, the inclusion of the theorem is proper. $I^{2n-1}(n-1)$ is always trivial since an (n-1)-connected closed M^{2n-1} is a sphere Σ^{2n-1} and therefore has trivial inertia group. On the other hand, $\theta^{2n-1}(n-1)$ contains $\theta^{2n-1}(\partial \pi)$ which is, in general, nontrivial and, for even n, quite large.

Wall [13] has shown $I^{2n}(n-1)=0$ for $n=2, 3, 5, 6, 7 \pmod 8$ and has order no greater than 4, 8 or 2 respectively when $n=0, 1, 4 \pmod 8$ respectively. Also, $\theta^{2n}(n-1)=\theta^{2n}(\partial\pi)=0$ for $n\equiv 5, 6 \pmod 8$. If $n\geq 4$ and $n\equiv 0, 1, 4 \pmod 8$ then $I^{2n}(n-1)=\theta^{2n}(n-1)$. For n>8, we choose a class $\alpha\in\pi_{n-1}(SO(n-1))$ such that $SS\alpha\in\pi_{n-1}(SO(n+1))$ is a generator and let M^{2n} be the total space of the S^n -bundle over S^n with characteristic class $S\alpha$. Then $I(M^{2n})=\theta^{2n}(n-1)$ [13, Theorem 10]. If n=4 or 8 take for M^{2n} Tamura's manifolds [12] $\overline{B}_{7,1}^{8}\cup_{i}D^{8}$ or $\overline{B}_{127,1}^{60}\cup_{i}D^{16}$; again, $I(M^{2n})=\theta^{2n}(n-1)$.

We now consider several low-dimensional cases. It is well known [5] that $\theta^7 = \theta^7(3) = \theta^7(\partial \pi) \approx Z_{28}$. Tamura [11] has shown $I^7(2) = \theta^7$. Now, $\theta^8 \approx Z_2$. The sole exotic 8-sphere is a spin-boundary [1] so $\theta^8 = \theta^8(3)$. As remarked above, $I^8(3) = \theta^8(3)$. θ^8 has order eight. It follows from [1], [3], [8] that $\theta^9 \approx Z_2 + Z_2 + Z_2$. Take as generators of the summands Σ_1 , Σ_2 , Σ_3 . Then Σ_1 is not a spin-boundary while Σ_2 and Σ_3 are, so $\theta^9(3) \approx Z_2 + Z_2$. Σ_3 may be taken to be the generator of $\theta^9(\partial \pi) \approx Z_2$. From [2], $\Sigma_3 \in I^9(3)$. I do not know if $\Sigma_2 \in I^9(3)$. $\theta^{10} \approx Z_2 + Z_3$ with generators Σ_2 and Σ_3 . Σ_2 is not a spin-boundary [8] while Σ_3 is, so $\theta^{10}(3) \approx Z_3$. $\theta^{10}(4) = \theta^{10}(\partial \pi) = 0$. From the corollary, image $\tau_{1,3} \subset \theta^{10}(3)$, so $\tau_{1,3} : Z_{28} \to Z_3$ is trivial.

The author has learned that A. Winkelnkemper has shown that any exotic sphere $\Sigma^n \subset \theta^n$ is in the inertia group of some closed M^n , but the author does not know whether Winkelnkemper's proof yields any information on the connectivity of M.

REFERENCES

- 1. D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271-298. MR 36 #2160.
- 2. E. H. Brown, Jr. and B. Steer, A note on Stiefel manifolds, Amer. J. Math. 87 (1965), 215-217. MR 30 #5322.
- 3. G. Brumfiel, On the homotopy groups of BPL and PL/O. II, Topology 8 (1969), 305-311
- **4.** R. De Sapio, Differential structures on a product of spheres. II, Ann. of Math. (2) **89** (1969), 305-313. MR **39** #7611.
- 5. M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584.
- 6. A. Kosinski, On the inertia group of π -manifolds, Amer. J. Math. 89 (1967), 227-248. MR 35 # 4936.
- 7. R. Lashof (Editor), Problems in differential and algebraic topology, Seattle Conference, 1963, Ann. of Math. (2) 81 (1965), 565-591. MR 32 #443.
- 8. J. W. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #5208.

- 9. J. Munkres, Concordance inertia groups, Advances in Math. 4 (1970), 224-235.
- 10. R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J., 1968.
- 11. I. Tamura, Sur les sommes connexes de certaines variétés différentiables, C. R. Acad. Sci. Paris 255 (1962), 3104-3106. MR 26 #781.
- 12. —, 8-manifolds admitting no differentiable structure, J. Math. Soc. Japan 13 (1961), 377-382. MR 26 #780.
- 13. C. T. C. Wall, Classification problems in differential topology. VI. Classification of (s-1)-connected (2s+1)-manifolds, Topology 6 (1967), 273-296. MR 35 #7343.

Illinois Institute of Technology, Chicago, Illinois 60616