IDEAL PRESERVING AUTOMORPHISMS OF POSTLIMINARY C*-ALGEBRAS

GEORGE A. ELLIOTT

ABSTRACT. E. C. Lance has shown that an automorphism of a separable postliminary C*-algebra which preserves closed two-sided ideals is universally weakly inner. This note extends Lance's result to the nonseparable case.

1. Let A be a C^* -algebra, and let α be an automorphism of A. If π is a representation of A, α is weakly inner with respect to π if there exists an element U of the weak closure of $\pi(A)$ such that $\pi(\alpha(x)) = U\pi(x) U^*$ for all $x \in A$. Then necessarily UU^* is equal to U^*U and is the largest projection in the weak closure of $\pi(A)$; hence $\alpha(\text{Ker }\pi) = \text{Ker }\pi$. α is universally weakly inner if α is weakly inner with respect to every representation. This implies that $\alpha(J) = J$ for every closed two-sided ideal J of A.

THEOREM. Suppose that A is a postliminary C*-algebra ([1, §4]). Suppose that α is an automorphism of A such that $\alpha(J) = J$ for every closed two-sided ideal J of A. Then α is universally weakly inner.

With the additional hypothesis that A be separable, this result is due to E. C. Lance ([3, Theorem 2]). In [3] Lance used the measure theoretic decomposition of a multiplicity-free representation of a separable C^* -algebra into irreducible representations ([1, §8]). The technique that we shall use here is the topological decomposition of a postliminary C^* -algebra into elementary C^* -algebras ([1, §10]). This in general is only possible locally; that is, after passing to a (nonzero) closed two-sided ideal. Accordingly, we shall first prove a local result (Lemma 2) and then deduce Theorem 1 with the aid of Zorn's lemma.

2. LEMMA. Let A and α be as in Theorem 1, and let $J \neq A$ be a closed two-sided ideal of A. Then there exists a closed two-sided ideal $J_0 \neq J$ such that the automorphism $x+J \mapsto \alpha(x)+J$ of J_0/J is universally weakly inner.

Received by the editors November 26, 1969 and, in revised form, April 8, 1970. AMS 1969 subject classifications. Primary 4665.

Key words and phrases. Postliminary C*-algebra, ideal preserving automorphism, universally weakly inner automorphism, continuous field of Hilbert spaces, associated continuous field of elementary C*-algebras.

PROOF. Passing to the quotient of A by J, we may suppose that I=0.

Passing to a closed two-sided ideal of A, we may suppose that A is the C^* -algebra defined by the continuous field of elementary C^* -algebras $\mathfrak{A} = \mathfrak{A}(\mathfrak{K})$ associated (as in [1, 10.7.2]), with a continuous field of nonzero Hilbert spaces \mathfrak{K} on the locally compact Hausdorff space $T = \operatorname{Prim} A$. (The existence of a suitable ideal follows from [1, 4.4.4, 4.5.4, 4.5.3, 10.5.8 and 10.7.7], referred to in that order.)

There exists a (unique) automorphism f of α such that, for $x \in A$, $f(x) = \alpha(x)$. (First set $f' = (\alpha_t)_{t \in T}$, where, for each $t \in T$, α_t is the automorphism $x + t \mapsto \alpha(x) + t$ of A/t. Then f' is an automorphism of α' , the continuous field of C^* -algebras defined by A. By [1, 10.5.2] there is an isomorphism φ of α onto α' such that, for $x \in A$, $\varphi(x) = (x+t)_{t \in T}$. Set $f = \varphi^{-1}f'\varphi$.)

By [1, 10.7.9], there exists a nonempty open set $V \subset T$ such that $f \mid V$ is defined by an automorphism g of $\mathfrak{R} \mid V$.

Set J_0 equal to the set of continuous fields with respect to a which vanish outside V; J_0 is a nonzero closed two-sided ideal of A.

Choose some fixed bounded field of operators h on T such that $h \mid V = g$. Then $hJ_0 \subset J_0$ and $J_0h \subset J_0$. (Suppose that $x \in J_0$. Since x is continuous with respect to a and vanishes outside V, hx and xh are continuous (and zero) at each point outside V. Also, since g is an automorphism of a0 V1, v2 and v3 are continuous at each point in v3 (see [1, 10.7.2]). Thus v4 are continuous at each point of v5; therefore they are continuous with respect to v6.)

Thus J_0 is a closed two-sided ideal of the C^* -algebra of bounded fields of operators on T generated by J_0 and h. Moreover, if $x \in J_0$, then for each $t \in V$ we have: $(\alpha(x))(t) = (f(x))(t) = f(t)(x(t)) = g(t)x(t)g(t)^* = h(t)x(t)h(t)^* = hxh^*(t)$, whence $\alpha(x) = hxh^*$.

It follows by [1, 2.10.4] that $\alpha | J_0$ is universally weakly inner.

3. Proof of Theorem 1. Let π be a representation of A. Let $(E_i)_{i\in I}$ be a maximal family of mutually orthogonal nonzero central projections in the weak closure of $\pi(A)$ such that for each $i\in I$ there exists U_i in the weak closure of $\pi(A)$ with $\pi(\alpha(x))E_i = U_i\pi(x)U_i^*E_i$ for all $x\in A$. If $\sum_{i\in I}E_i$ is not the largest projection in the weak closure of $\pi(A)$, let π_0 denote the (nonzero) representation of $A:x\mapsto (1-\sum_{i\in I}E_i)(x)$. Applying Lemma 2 with $J=\operatorname{Ker} \pi_0$ we get an ideal $J_0 \neq \operatorname{Ker} \pi_0$ such that the automorphism $x+\operatorname{Ker} \pi_0\mapsto \alpha(x)+\operatorname{Ker} \pi_0$ of $J_0/\operatorname{Ker} \pi_0$ is universally weakly inner. Considering in particular the representation $x+\operatorname{Ker} \pi_0\mapsto \pi_0(x)$ of $J_0/\operatorname{Ker} \pi_0$, we get an element U_0 of the weak closure of $\pi_0(J_0)$ such that for all

 $x \in J_0$, $\pi_0(\alpha(x)) = U_0\pi_0(x) U_0^*$. Letting E_0 denote the largest projection in the weak closure of $\pi_0(J_0)$, we have: $E_0 \neq 0$, E_0 is orthogonal to all E_i ($i \in I$), both E_0 and U_0 are in the weak closure of $\pi(A)$, E_0 is central, and $\pi(\alpha(x))E_0 = U_0\pi(x) U_0^*E_0$ for all $x \in J_0$. By [1, 1.7.2], there exists an increasing approximate identity $(u_k)_{k \in K}$ for J_0 ; then $(\alpha(u_k))_{k \in K}$ is also such; by [1, 2.2.10], $E_0 = \sup_k \pi_0(u_k) = \sup_k \pi_0(\alpha(u_k))$; hence, for any $x \in A$, in the sense of strong convergence: $\pi(\alpha(x))E_0 = \lim_k \pi(\alpha(u_k))\pi(\alpha(x))E_0 = \lim_k \pi(\alpha(u_k))E_0 = \lim_k U_0\pi(u_k)\pi(x) U_0^*E_0 = \lim_k U_0\pi(u_k)\pi(x) U_0^*E_0 = U_0\pi(x) U_0^*E_0$. This contradicts the maximality of $(E_i)_{i\in I}$; $\sum_{i\in I} E_i$ must therefore be the largest projection in the weak closure of $\pi(A)$. Setting $U = \sum_{i\in I} E_i U_i$ we have: U is in the weak closure of $\pi(A)$, and for all $x \in A$, $\pi(\alpha(x)) = U\pi(x) U^*$.

- 4. **Problems.** 4.1. If α is a universally weakly inner automorphism of a C^* -algebra must $\alpha(J) = J$ for every two-sided ideal J (not necessarily closed)?
- 4.2. In [3], Lance raised the question, if α is an automorphism of a C^* -algebra such that $\alpha(J) \subset J$ for every closed two-sided ideal J, must $\alpha(J) = J$ for every closed two-sided ideal J? He showed that this is true for a postliminary C^* -algebra ([3, Theorem 1]).
- 4.3. The enveloping von Neumann algebra of a postliminary C^* -algebra is discrete. An automorphism of a discrete von Neumann algebra which fixes each element of the centre is inner. Can these facts be used to give a different proof of Theorem 1?
- 4.4. The condition in Theorem 1 that A be postliminary is too strong, since, for example, Theorem 1 also holds for a discrete von Neumann algebra. However, Theorem 1 may fail to hold (e.g. [2, Example a]). Does Theorem 1 fail for every antiliminary C*-algebra?

REFERENCES

- 1. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 2. R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys. 4 (1967), 32-63. MR 34 #6552.
- 3. E. C. Lance, Automorphisms of postliminal C*-algebras, Pacific J. Math. 23 (1967), 547-555, MR 36 #3133.

University of British Columbia, Vancouver, Canada