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REAL ZEROS OF A RANDOM SUM
OF ORTHOGONAL POLYNOMIALS

MINAKETAN DAS

ABsTRACT. Let co, 1, €2, - - - be a sequence of normally dis-
tributed independent random variables w1th mathematlcal ex-
pectation zero and variance unity. Let P (x) (k=0,1,2,---)
be the normalised Legendre polynomials orthogonal with respect
to the interval (— 1 1). It is proved that the average number of
the zeros of coP (%) +c|P =)+ - +c,.P (x) in the same
interval is asymptotically equal to (3)"‘/ ?n when # is large.

1. Let ¢o(x), é1(x), ¢2(x), - - - be a sequence of polynomials
orthogonal with respect to a given positive-valued weight function
w(x) over the interval (e, b) where one or both of a and b may be
infinite and let Y, (x) = g5 /2 ¢, (x) with

b 2
o= [ e

Let f(x) be defined by
N
(1.1) (&) = f(c; x) = Z_‘, (%),

where the coefficients ¢, ¢1, ¢;, - - - form a sequence of mutually in-
dependent, normally distributed random variables with mathemat-
ical expectation zero and variance unity. We take the ordered set
Co, * * *, Cn as the point ¢ in an (#+1)-dimensional real vector space
Ryt The probability that the point ¢ lies in an “infinitesimal
rectangle” II(c) with sides of lengths dco, dcy, - - -, dc, is

n

dP(e) = II {(2m)~1/2 exp(—}a)da}.

k=0

Let N(c; o, B) denote the number of zeros of the polynomial (1.1) in
the interval a =x <. We establish the formula

Sa(®) + Ra(x) 1 Qn(x)72
(1.2) f,,“N(c a,B)dP(c) = —j; I: Do) - Z Df,(x):l dzx,
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where
Du(%) = ¢ns1(®)a(%) — bns2(2)$n(),
On(%) = Gns1(2)bn(%) — Gnr1(x)$n (%),
Ra(®) = 3{dar1(2)6n(2) — dns1(2)n (1)}
and

Sa(®) = 3 {bni1(®)n(2) = dura(@)dn (@)}

When 7 is large, we can find an estimate of the integrand in the
right-hand side of (1.2) in terms of # and x only in an easily integrable
form, since only two functions ¢,(x) and ¢,+1(x) are now involved.

Let P;(x) be the normalized Legendre polynomial (k+3%)!/2P;(x),
where

Puln) = 1 1 g 2 _ 1),
"(x)_ﬁﬁﬁ(x = 1)k

the famous Legendre polynomial. Here a= —1 and b=1 and w(x)=1.
Further ¥ (x) = Py (x) with g, = (n+3)'/2. We prove

THEOREM 1. The average number of zeros of
COP:(x) +61Pt(x) + .. 4 ckP:(x) + .-+ C,.P:(x)

in (—1, 1) is asymptotically equal to n/~/3 when n is sufficiently large.
2. Let us put

A= A,(x) = po(®) +¥1(x) + - - - + ¥a(®),

B = Ba(%) = ¢a(a)¥l () + - - - + ¥u(@)¥d ()
and

C=Cu(®) = W@+ -+ [ @]

Then, by Cauchy’s inequality, 4AC—B2Z [y@/};]?>0. By proceed-
ing as in §3 of our earlier work (cf. [1]), we obtain

1 [ (AC — B2
2.1) fR N(c;a,B)dP(c) = ;—f %—dx.

We put N\, =h,g; 'hyt, where h, is the coefficient of x* in ¢(x) and ga
is defined as above. Then we have

@) 3 a@nt) = O8O 8n@66)

k=0 y—%
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This is the famous Christofel-Darboux formula [3, p. 135] in the
theory of orthogonal functions. We set y=x+46 in the formula (2.2)
and equate the coefficients of like powers of 8 on both sides to obtain

2.3) ﬁggi‘ [6.®)]" = M[Soa (@ n(2) — Smia(@oa(®)],

n

LA ’ A " "
(2.4) 21 g [6,(®ev(x)] = 5 [B1@60(x) — b))

and

g ” A "
(2.5) Z g»l [¢r(x)¢r (x)] = 3_ [¢,.+1(x)¢,.(x) — Gnt1(%)Pn (x)J

y=1

Differentiating (2.4) and making use of (2.5), we get

kid - ’ 2 >\n "n 174
Zlg.‘[qb,(x)] == [15@0(@) — drn(@en” ()]
(2.6)

+ % [brt1(5)$n(2) = dnsa(@)éa®)]-
Making use of (2.3), (2.4) and (2.6), and the fact that \,50, we ob-
tain the formula (1.2).
3. For Legendre polynomials P,(x), we have the relations
@1 (1= a)Pia(@) = 26Pia(®) — (1 + 1)(n + 2)Paya(x)
and
(3.2) (1 = 2)P(x) = 22PL(%) — n(n + 1) Pa(s).

From (3.1) and (3.2), we obtain

’

(1 = &) [Pra(#) Ph() — Pl(x) Phya(#)]

3.3 ’ , ,
B 4 DI Pen@PL®) — Pu@) Pos(®)} + 2Pars() P
and

(1 = &) [Pl41(2) Pa(®) — Pays(2) Pi()]
3.49)

= 22[PL11(%) Pa(%) — Pata(2) Pu(%)] — 2(n + 1) Po(2) Paia(s).

Differentiating (3.4) and using (3.3), we get



150 MINAKETAN DAS [January

(1 = &) [P1(#) Pa(x) — PY' (%) Paya(s)]

= (1 + 1) [n{ Pay1(%) Pa(2) — Pa(2) Prys(2)} + 2Pnya(2) Pa(%)]

(3.5) + [2{ Prp1(2) Pa(®) — Pr(2) Pasa(2)}

1 — a2
— (1 + 1) Pa(%) Paya(®)]
+ 2(n + 1)[P,() Pays(®) — Pa(®) Prya(®)]-

We recall another formula for the derivative of a Legendre function
[2,p. 179, 17)], viz.:

(3.6) (" — 1)Pa(x) = nxPo(x) — nPay(%)

and

@B.7) (& = DPha(®) = (n+ DaPap(®) — (2 + 1) Pa(®).
The application of (3.6) and (3.7) yields

(& = 1)[Phys(®) Pa(®) — Popa(#) Pr(®)]

48 = (8 + 1)[22Po(2) Pass(x) — Pa(2) — Pan(@)],
(@ = 1)[Phss(®) Pa(®) + Paia(2) Pi()]

@9 = (n + 1)[Pass(a) — Pi()]

and

(3.10) (2 — )Pasa(®Pa(®) = (1 + 1) Paya(®) [Papa(x) — 2Pa(®)].
To evaluate
Piy(x) + Pi1(x) — 2P (%) Ppya(x),

we set x =cos 7y and make use of the celebrated Laplace’s formula (cf.
[2, p. 208]) giving the asymptotic value of P.(cos ) as

2\ 1
( : ) cos[(n + —)7 - —"—] + 0((n sin »)=+1)
wn sin vy 2 4

in the range e <y <m —e¢, where 0 <e<w/2. After some simplifications,
we find
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P:(x) + P,z.+1(x) — 2%Pp(%) Prya(x)

e [ B R (G
w0 sin y 2 4 2 4
— 2 cos ¥ cos [(n + i)y - —W—] cos [(n + i)‘y - 1]}
2 4 2 4

+ O(n~2 cosec? v)

2
= (1 — )2 4+ O(n=2(1 — x2)Y).
by /3
Making use of (3.8), we obtain
2
(3.11) {Pry1(#) Po(2) — Popr(x) Pa(2)} > — (1 — 21212
T

for sufficiently large # and | x| <1—n~%3log n. By the first theorem of
Stieltjes, [2, p. 197,(8)] | Pa(x)| S4n1/2(1—x2)~Y4 and by (3.6),
| Pi(x)| <8nt/2(1—x2)~5/4, Thus

(3.12) nPp(x) Ppya(x) = O((1 — 23)~1/2),
(3.13) Pa(x)Pi(x) = 0((1 — )"
and

2.-3/2

(B14)  Poa@)Pa(®) + Pu(®@) Papi(®) = 0((1 — ) ).
By putting these estimates in (3.3), (3.4) and (3.5), we get

1 !

(1 — 2)(P{sPh — P Pr)

= n(n + 1) (Prt1Pa — PaPuys) + O(n(1 — 2%)~%2),
(1 = &) (PYs1Pa — Pl Pay)

= 20(Pp1Pn — PpPayr) + O((1 — 2232

and

16x 9
a- xz)(P;’-{-an — P/ P.yy) = {1 i n— "-} (P;+1Pn — PyP.1)

+ 0(n(1 — w)yoi),
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where we have written Pi, P{, P{ and P}’ for Pi.(x), Pi(x), Py (x)
and P}’ (x), respectively. This abbreviation is also employed below.

By using (3.11), we finally obtain, for |x| <1—n"23 log n, the
estimate

u

PPy = P PY)/(PaysPa— PaptPl) = —n (1 =2 ) (14 0(1/n)),
(PP — PhiaPl)/(PayiPa— PaptPl) = n'(1 — &) (1 4 0(1/1))

and

(PiiPy — PoprPl)/(PayiPn — PorPl) = 0™ (1 — 2°) 7).

Putting these values for Qn(x)/D,(x), Ru(x)/D.(x) and S.(x)/Da(x)
in (1.2), the expression enclosed by brackets is estimated by

(3.15) %2 a _1 s [1 + O((logln)a):l'

Let e=7n"%3log n and N(c;e) denote the number of zeros of

7(c;2) = coPo (%) + c1Pi(x) + - - - + caPa(x)

in —14+e<x=<1—e By (1.2), we have

1—e n

f N(c; €)dP(c) = l— [1 + O((log n)~3)](1 — x2)~1/%dx
R,

nt+1 ™ —1+e \/3

= {1 + 0(Clog %)}
V3 )

To complete the proof of Theorem 1, we observe (cf. [2, p. 250])
that

| P.d)| = %‘ j::{z-l— i(1 — 2%/ cos r}"d‘ri

and thus for z=1+ee?, IP,.(z)[ <(143€)"<2n® exp(n'’?). Further
P.(1) =1. We can prove, as in our work [1, p. 722], that

Pf(max lal = n) >1—enh,
0sSkSn
so that for z=1--ee”, we have

(Pr(| fc;5) | = 4n* exp(ni’®)) < exp(—n?/3)

and
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(Pr(| fle;9)| < 1)) < 1/m.
Let »(c; €) denote the number of zeros of |f(c; 2)| in |z2—1| <e. By
making use of Jensen's theorem, we find
flc; 1 + e®)
fe;1)
with probability at least equal with 1—2/n. This shows that the
average number of zeros of f(-; x) in 1—e<x=1 and similarly in

—1=x=< —1-4¢€ is O(n'?). Therefore, on using (3.16), we finally ob-
tain the proof of Theorem 1.

do = O(n'/%)

1 2r
v(c;e) log2 < —f log
27 [1]
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