REAL ZEROS OF A RANDOM SUM OF ORTHOGONAL POLYNOMIALS

MINAKETAN DAS

ABSTRACT. Let c_0 , c_1 , c_2 , \cdots be a sequence of normally distributed independent random variables with mathematical expectation zero and variance unity. Let $P_k^*(x)$ $(k=0, 1, 2, \cdots)$ be the normalised Legendre polynomials orthogonal with respect to the interval (-1, 1). It is proved that the average number of the zeros of $c_0P_0^*(x)+c_1P_1^*(x)+\cdots+c_nP_n^*(x)$ in the same interval is asymptotically equal to $(3)^{-1/2}n$ when n is large.

1. Let $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, \cdots be a sequence of polynomials orthogonal with respect to a given positive-valued weight function $\omega(x)$ over the interval (a, b) where one or both of a and b may be infinite and let $\psi_n(x) = g_n^{-1/2} \phi_n(x)$ with

$$g_n = \int_{-a}^{b} \omega(x) \phi_n^2(x) dx.$$

Let f(x) be defined by

(1.1)
$$f(x) \equiv f(\mathbf{c}; x) = \sum_{k=0}^{N} c_k \psi_k(x),$$

where the coefficients c_0 , c_1 , c_2 , \cdots form a sequence of mutually independent, normally distributed random variables with mathematical expectation zero and variance unity. We take the ordered set c_0 , \cdots , c_n as the point c in an (n+1)-dimensional real vector space R_{n+1} . The probability that the point c lies in an "infinitesimal rectangle" $\Pi(c)$ with sides of lengths dc_0 , dc_1 , \cdots , dc_n is

$$dP(\mathbf{c}) = \prod_{k=0}^{n} \left\{ (2\pi)^{-1/2} \exp(-\frac{1}{2}c_k^2) dc_k \right\}.$$

Let $N(c; \alpha, \beta)$ denote the number of zeros of the polynomial (1.1) in the interval $\alpha \le x \le \beta$. We establish the formula

(1.2)
$$\int_{R_{n+1}} N(\mathbf{c}; \alpha, \beta) dP(\mathbf{c}) = \frac{1}{\pi} \int_{\alpha}^{\beta} \left[\frac{S_n(x) + R_n(x)}{D_n(x)} - \frac{1}{4} \frac{Q_n^2(x)}{D_n^2(x)} \right]^{1/2} dx,$$

Received by the editors August 5, 1969.

AMS 1967 subject classifications. Primary 60XX, 6090.

Key words and phrases. Normally distributed random variables, mathematical expectation, variance, orthogonal polynomials.

where

$$D_n(x) = \phi'_{n+1}(x)\phi_n(x) - \phi_{n+1}(x)\phi'_n(x),$$

$$Q_n(x) = \phi''_{n+1}(x)\phi_n(x) - \phi_{n+1}(x)\phi''_n(x),$$

$$R_n(x) = \frac{1}{2} \{\phi''_{n+1}(x)\phi'_n(x) - \phi'_{n+1}(x)\phi''_n(x)\}$$

and

$$S_n(x) = \frac{1}{6} \left\{ \phi_{n+1}^{\prime\prime\prime}(x) \phi_n(x) - \phi_{n+1}(x) \phi_n^{\prime\prime\prime}(x) \right\}.$$

When n is large, we can find an estimate of the integrand in the right-hand side of (1.2) in terms of n and x only in an easily integrable form, since only two functions $\phi_n(x)$ and $\phi_{n+1}(x)$ are now involved.

Let $P_k^*(x)$ be the normalized Legendre polynomial $(k+\frac{1}{2})^{1/2}P_k(x)$, where

$$P_k(x) = \frac{1}{2^k} \frac{1}{k!} \frac{d^k}{dx^k} (x^2 - 1)^k,$$

the famous Legendre polynomial. Here a = -1 and b = 1 and $\omega(x) \equiv 1$. Further $\psi_k(x) = P_k^*(x)$ with $g_n = (n + \frac{1}{2})^{1/2}$. We prove

THEOREM 1. The average number of zeros of

$$c_0 P_0^*(x) + c_1 P_1^*(x) + \cdots + c_k P_k^*(x) + \cdots + c_n P_n^*(x)$$

in (-1, 1) is asymptotically equal to $n/\sqrt{3}$ when n is sufficiently large.

2. Let us put

$$A \equiv A_n(x) = \psi_0^2(x) + \psi_1^2(x) + \dots + \psi_n^2(x),$$

$$B \equiv B_n(x) = \psi_1(x)\psi_1'(x) + \dots + \psi_n(x)\psi_n'(x)$$

and

$$C \equiv C_n(x) = [\psi'_1(x)]^2 + \cdots + [\psi'_n(x)]^2.$$

Then, by Cauchy's inequality, $AC-B^2 \ge [\psi_0 \psi_1']^2 > 0$. By proceeding as in §3 of our earlier work (cf. [1]), we obtain

(2.1)
$$\int_{R_{n+1}} N(\mathbf{c}; \alpha, \beta) dP(\mathbf{c}) = \frac{1}{\pi} \int_{\alpha}^{\beta} \frac{(AC - B^2)^{1/2}}{A} dx.$$

We put $\lambda_n = h_n g_n^{-1} h_{n+1}^{-1}$, where h_n is the coefficient of x^n in $\phi_n(x)$ and g_n is defined as above. Then we have

(2.2)
$$\sum_{k=0}^{n} g_{k}^{-1} \phi_{k}(x) \phi_{k}(y) = \lambda_{n} \frac{\phi_{n+1}(y) \phi_{n}(x) - \phi_{n+1}(x) \phi_{n}(y)}{y - x}$$

This is the famous Christofel-Darboux formula [3, p. 135] in the theory of orthogonal functions. We set $y=x+\delta$ in the formula (2.2) and equate the coefficients of like powers of δ on both sides to obtain

(2.3)
$$\sum_{n=0}^{n} g_{\nu}^{-1} [\phi_{\nu}(x)]^{2} = \lambda_{n} [\phi'_{n+1}(x)\phi_{n}(x) - \phi_{n+1}(x)\phi'_{n}(x)],$$

(2.4)
$$\sum_{\nu=1}^{n} g_{\nu}^{-1} \left[\phi_{\nu}(x) \phi_{\nu}'(x) \right] = \frac{\lambda_{n}}{2} \left[\phi_{n+1}''(x) \phi_{n}(x) - \phi_{n+1}(x) \phi_{n}''(x) \right]$$

and

(2.5)
$$\sum_{\nu=1}^{n} g_{\nu}^{-1} \left[\phi_{\nu}(x) \phi_{\nu}^{\prime \prime}(x) \right] = \frac{\lambda^{n}}{3} \left[\phi_{n+1}^{\prime \prime \prime}(x) \phi_{n}(x) - \phi_{n+1}(x) \phi_{n}^{\prime \prime \prime}(x) \right].$$

Differentiating (2.4) and making use of (2.5), we get

(2.6)
$$\sum_{r=1}^{n} g_{r}^{-1} \left[\phi_{r}'(x) \right]^{2} = \frac{\lambda_{n}}{6} \left[\phi_{n+1}'''(x) \phi_{n}(x) - \phi_{n+1}(x) \phi_{n}'''(x) \right] + \frac{\lambda_{n}}{2} \left[\phi_{n+1}''(x) \phi_{n}'(x) - \phi_{n+1}'(x) \phi_{n}''(x) \right].$$

Making use of (2.3), (2.4) and (2.6), and the fact that $\lambda_n \neq 0$, we obtain the formula (1.2).

3. For Legendre polynomials $P_n(x)$, we have the relations

$$(3.1) (1-x^2)P''_{n+1}(x) = 2xP'_{n+1}(x) - (n+1)(n+2)P_{n+1}(x)$$

and

$$(3.2) (1-x^2)P_n''(x) = 2xP_n'(x) - n(n+1)P_n(x).$$

From (3.1) and (3.2), we obtain

$$(1 - x^{2}) [P''_{n+1}(x)P'_{n}(x) - P''_{n}(x)P'_{n+1}(x)]$$

$$= -(n+1) [n \{P_{n+1}(x)P'_{n}(x) - P_{n}(x)P'_{n+1}(x)\} + 2P_{n+1}(x)P'_{n}(x)]$$

and

$$(3.4) (1-x^2)[P''_{n+1}(x)P_n(x) - P_{n+1}(x)P''_n(x)]$$

$$= 2x[P'_{n+1}(x)P_n(x) - P_{n+1}(x)P'_n(x)] - 2(n+1)P_n(x)P_{n+1}(x).$$

Differentiating (3.4) and using (3.3), we get

$$(1 - x^{2}) [P'''_{n+1}(x) P_{n}(x) - P'''_{n}(x) P_{n+1}(x)]$$

$$= (n+1) [n \{ P_{n+1}(x) P'_{n}(x) - P_{n}(x) P'_{n+1}(x) \} + 2P_{n+1}(x) P'_{n}(x)]$$

$$+ \frac{16}{1 - x^{2}} [x \{ P'_{n+1}(x) P_{n}(x) - P'_{n}(x) P_{n+1}(x) \}$$

$$- (n+1) P_{n}(x) P_{n+1}(x)]$$

$$+ 2(n+1) [P'_{n}(x) P_{n+1}(x) - P_{n}(x) P'_{n+1}(x)].$$

We recall another formula for the derivative of a Legendre function [2, p. 179, (17)], viz.:

$$(3.6) (x^2 - 1)P'_n(x) = nxP_n(x) - nP_{n-1}(x)$$

and

$$(3.7) (x^2 - 1)P'_{n+1}(x) = (n+1)xP_{n+1}(x) - (n+1)P_n(x).$$

The application of (3.6) and (3.7) yields

$$(x^{2} - 1)[P'_{n+1}(x)P_{n}(x) - P_{n+1}(x)P'_{n}(x)]$$

$$= (n+1)[2xP_{n}(x)P_{n+1}(x) - P_{n}^{2}(x) - P_{n+1}^{2}(x)],$$

$$(x^{2} - 1)[P'_{n+1}(x)P_{n}(x) + P_{n+1}(x)P'_{n}(x)]$$

$$= (n+1)[P_{n+1}^{2}(x) - P_{n}^{2}(x)]$$
(3.9)

and

$$(3.10) \quad (x^2 - 1)P_{n+1}(x)P'_n(x) = (n+1)P_{n+1}(x)[P_{n+1}(x) - xP_n(x)].$$

To evaluate

$$P_n^2(x) + P_{n+1}^2(x) - 2xP_n(x)P_{n+1}(x),$$

we set $x = \cos \gamma$ and make use of the celebrated Laplace's formula (cf. [2, p. 208]) giving the asymptotic value of $P_n(\cos \gamma)$ as

$$\left(\frac{2}{\pi n \sin \gamma}\right)^{1/2} \cos \left[\left(n + \frac{1}{2}\right)\gamma - \frac{\pi}{4}\right] + O((n \sin \gamma)^{-8/2})$$

in the range $\epsilon < \gamma < \pi - \epsilon$, where $0 < \epsilon < \pi/2$. After some simplifications, we find

$$\begin{split} P_n^2(x) &+ P_{n+1}^2(x) - 2xP_n(x)P_{n+1}(x) \\ &= \frac{2}{\pi n \sin \gamma} \left\{ \cos^2 \left[\left(n + \frac{1}{2} \right) \gamma - \frac{\pi}{4} \right] + \cos^2 \left[\left(n + \frac{3}{2} \right) \gamma - \frac{\pi}{4} \right] \right. \\ &- 2 \cos \gamma \cos \left[\left(n + \frac{1}{2} \right) \gamma - \frac{\pi}{4} \right] \cos \left[\left(n + \frac{3}{2} \right) \gamma - \frac{\pi}{4} \right] \right\} \\ &+ O(n^{-2} \csc^2 \gamma) \\ &= \frac{2}{\pi} (1 - x^2)^{1/2} + O(n^{-2}(1 - x^2)^{-1}). \end{split}$$

Making use of (3.8), we obtain

$$(3.11) \qquad \left\{ P'_{n+1}(x)P_n(x) - P_{n+1}(x)P'_n(x) \right\} > \frac{2}{\pi} (1 - x^2)^{-1/2}$$

for sufficiently large n and $|x| < 1 - n^{-2/3} \log n$. By the first theorem of Stieltjes, [2, p. 197,(8)] $|P_n(x)| \le 4n^{-1/2}(1-x^2)^{-1/4}$ and by (3.6), $|P'_n(x)| \le 8n^{1/2}(1-x^2)^{-5/4}$. Thus

$$(3.12) nP_n(x)P_{n+1}(x) = O((1-x^2)^{-1/2}),$$

(3.13)
$$P_n(x)P'_n(x) = O((1-x^2)^{-3/2})$$

and

$$(3.14) P'_{n+1}(x)P_n(x) + P'_n(x)P_{n+1}(x) = O((1-x^2)^{-3/2}).$$

By putting these estimates in (3.3), (3.4) and (3.5), we get

$$(1-x^{2})(P''_{n+1}P'_{n}-P''_{n}P'_{n+1})$$

$$=n(n+1)(P'_{n+1}P_{n}-P'_{n}P_{n+1})+O(n(1-x^{2})^{-3/2}),$$

$$(1-x^{2})(P''_{n+1}P_{n}-P''_{n}P_{n+1})$$

$$=2x(P'_{n+1}P_{n}-P'_{n}P_{n+1})+O((1-x^{2})^{-3/2})$$

and

$$(1-x^{2})(P_{n+1}^{\prime\prime\prime}P_{n}-P_{n}^{\prime\prime\prime}P_{n+1}) = \left\{\frac{16x}{1-x^{2}}-n-n^{2}\right\}(P_{n+1}^{\prime}P_{n}-P_{n}^{\prime}P_{n+1}) + O(n(1-x^{2})^{-3/2}),$$

where we have written P_k , P'_k , P''_k and P'''_k for $P_k(x)$, $P'_k(x)$, $P''_k(x)$ and $P'''_k(x)$, respectively. This abbreviation is also employed below.

By using (3.11), we finally obtain, for $|x| < 1 - n^{-2/3} \log n$, the estimate

$$(P_{n+1}^{\prime\prime\prime}P_n - P_{n+1}P_n^{\prime\prime\prime})/(P_{n+1}^{\prime}P_n - P_{n+1}P_n^{\prime}) = -n^2(1-x^2)^{-1}(1+O(1/n)),$$

$$(P_{n+1}^{\prime\prime\prime}P_n^{\prime} - P_{n+1}^{\prime\prime}P_n^{\prime\prime})/(P_{n+1}^{\prime}P_n - P_{n+1}P_n^{\prime}) = n^2(1-x^2)^{-1}(1+O(1/n))$$

and

$$(P_{n+1}^{\prime\prime}P_n - P_{n+1}P_n^{\prime\prime})/(P_{n+1}^{\prime}P_n - P_{n+1}P_n^{\prime}) = O(n^{2/3}(1-x^2)^{-1}).$$

Putting these values for $Q_n(x)/D_n(x)$, $R_n(x)/D_n(x)$ and $S_n(x)/D_n(x)$ in (1.2), the expression enclosed by brackets is estimated by

(3.15)
$$\frac{n^2}{3} \frac{1}{(1-x^2)} \left[1 + O\left(\frac{1}{(\log n)^3}\right) \right].$$

Let $\epsilon = n^{-2/3} \log n$ and $N(c; \epsilon)$ denote the number of zeros of

$$f(c; x) = c_0 P_0^*(x) + c_1 P_1^*(x) + \cdots + c_n P_n^*(x)$$

in $-1 + \epsilon \le x \le 1 - \epsilon$. By (1.2), we have

$$\int_{R_{n+1}} N(\mathbf{c}; \epsilon) dP(\mathbf{c}) = \frac{1}{\pi} \int_{-1+\epsilon}^{1-\epsilon} \frac{n}{\sqrt{3}} \left[1 + O((\log n)^{-3}) \right] (1 - x^2)^{-1/2} dx$$
$$= \frac{n}{\sqrt{3}} \left\{ 1 + O((\log n)^{-3}) \right\}.$$

To complete the proof of Theorem 1, we observe (cf. [2, p. 250]) that

$$|P_n(z)| = \frac{1}{\pi} \int_0^{\pi} \{z + i(1-z^2)^{1/2} \cos \tau\}^n d\tau$$

and thus for $z=1+\epsilon e^{i\theta}$, $|P_n(z)|<(1+3\epsilon)^n<2n^3\exp(n^{1/3})$. Further $P_n(1)=1$. We can prove, as in our work [1, p. 722], that

$$\Pr\left(\max_{0 \le k \le n} \left| c_k \right| \le n\right) > 1 - e^{-n/3},$$

so that for $z = 1 + \epsilon e^{i\theta}$, we have

$$(\Pr(|f(c;z)| \ge 4n^4 \exp(n^{1/3}))) < \exp(-n^2/3)$$

and

$$(\Pr(|f(c;z)| < 1)) < 1/n.$$

REAL ZEROS OF A RANDOM SUM

Let $\nu(c; \epsilon)$ denote the number of zeros of |f(c; z)| in $|z-1| \le \epsilon$. By making use of Jensen's theorem, we find

$$\nu(\mathbf{c}; \epsilon) \log 2 \leq \frac{1}{2\pi} \int_0^{2\pi} \log \left| \frac{f(\mathbf{c}; 1 + \epsilon e^{i\theta})}{f(\mathbf{c}; 1)} \right| d\theta = O(n^{1/3})$$

with probability at least equal with 1-2/n. This shows that the average number of zeros of $f(\cdot; x)$ in $1-\epsilon \le x \le 1$ and similarly in $-1 \le x \le -1+\epsilon$ is $O(n^{1/3})$. Therefore, on using (3.16), we finally obtain the proof of Theorem 1.

REFERENCES

- 1. M. Das, The average number of real zeros of a random trigonometric polynomial, Proc. Cambridge Philos, Soc. 64 (1968), 721-729, MR 38 #1720.
- 2. G. Sansone, Orthogonal functions, Zanichelli, Bologna, 1952; English transl., Pure and Appl. Math., vol. 9, Interscience, New York, 1959. MR 13, 741; MR 21 #2140.
 - 3. E. D. Rainville, Special functions, Macmillan, New York, 1960. MR 21 #6447.

FAKIR MOHAN COLLEGE, BALASORE, ORISSA, INDIA