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ADDENDUM TO ‘‘ON THE FRATTINI SUBGROUP”

JOHN COSSEY AND ALICE WHITTEMORE

ABSsTRACT. Let F be a free group, R a normal subgroup of Fand
V a fully invariant subgroup of R. In a recent paper the authors cal-
culated the Frattini subgroup of F/V under suitable conditions on
R and V. This paper presents information on the Frattini subgroup
of subgroups of F/V under the same conditions.

1. Introduction. The main result is (cf. [2, Theorem 1]: we also
follow the notation of [2]).

THEOREM 1. Let F be a noncyclic free group, R a normal subgroup of
F such that F/R is residually finite. If S/R’ is a subgroup of F/R’, then
the Frattini subgroup of S/R’ is trivial.

Armed with this result, we can generalise the remaining results of
[2]: as a sample, we state

THEOREM 2. Let V3, + - -, V, be nilpotent varieties, with Vi of expo-
nent 0, and let F be a free group. Put V="Vy -+ - Vo R=Vy - - - V.(F).
Then ®(S/V(F))SR'/V(F): in particular, any subgroup of a rela-
tively free group of V has nilpotent Frattini subgroup.

CoroLLARY 3 (SokoLov [4, THEOREM 3]). Subgroups of free
soluble groups have trivial Frattini subgroup.

The proofs of Theorem 2 and Corollary 3 are easily modified from
the proofs of the corresponding results in [2].

2. The proof of Theorem 1. The proof separates into two cases:
(1) ShR=FR'.

(2) SRR’

For the first case, we have that the sequence

1—> R/R'—-SR/R' > S/R' —1

is exact, and also splits. But Graham Higman [3] has shown that
S/R’ then has cohomological dimension 1, and so S/R’ is free (Stal-
lings [5] and Swan [6]). It is well known that the Frattini subgroup
of a free group is trivial, and so we are left with case (2).
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Let C/R’ denote the centraliser in S/R’ of SNR/R’. Then if
1#gESNR/R’, or géEC/R’, the proof of Theorem 1 of [2] may be
applied to show that g&®(S/R’). Thus we need to show that if
gEC/R'\R/R’, then gcc®(S/R’). For such a g, consider {g, SO\R/R')
=H/R'. Theorem 2 of Baumslag and Gruenberg [1] gives us
that H/SNR is a finite cyclic group, and so g"& (SNR)/R’ for some
integer n>1. But we know that F/R’is torsion free (Graham Higman
[3]), and hence grs<1. If g€®(S/R’) then g"€®(S/R")N(SNR/R’)
=1, a contradiction.

This completes the proof of Theorem 1.
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