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ABSTRACT. In set theory without the axiom of choice we prove

a consistency result involving certain "finite versions" of the

axiom of choice. Assume that it is possible to select a nonempty

finite subset from each nonempty set. We determine sets Z, of

integers, which have the property that nS.Z is a necessary and

sufficient condition for the possibility of choosing an element from

every n-element set. Given any nonempty set P of primes, the set

Zp, consisting of integers which are not "linear combinations" of

primes of P, is such a set Z.

1. Introduction. Let a be the system of set theory of [4]. This is a

system of the Gödel-Bernays type which permits the existence of

urelemente (objects in the domain, but not the range of the e-relation)

and which does not include among its axioms the axiom of choice.

By AC (the axiom of choice) we mean the statement of <r: "For

every nonempty set X of nonempty sets there is a function / defined

on X such that/(x)£x for each xEX." We consider various "finite

versions" of the axiom of choice. Let FS be the statement: "For every

nonempty set X of nonempty sets there is a function / defined on X

such that fix) is a nonempty finite1 subset of x for each xEX."

Identify nonnegative integers with finite Von Neumann ordinals.

For each positive integer ra let C(ra) be the statement: "For every

nonempty set X of ra-element sets there is a function/ defined on X

such that/(x)£x for each xEX." Thus C(l) is a (trivial) theorem of

a. For a subset Z= {z0, Zi, • • -, Zk-i} of integers 2:2, let CiZ) be the

conjunction of the statements Ciz¡), iEk.

We are concerned with the following problem. Assume cr is consis-

tent. For which sets Z of integers 2:2 is the set of axioms

(1) <j\J {"IAC, FS,(Vnè 2)idn) ^ n E Z)}

also consistent. Let Z be the set of sets Z for which (1) holds.
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respect to inclusion; otherwise, A is infinite.

Copyright © 1971, American Mathematical Society

133



134 M. M. ZUCKERMAN [January

For each positive integer n, let In be the set of integers 2: n. The-

orem 6 of [2] shows that I2GZ; Theorem 1 of [6] implies that 0

(the empty set) is in Z. If P is any nonempty set of primes, let

Lin Comb P be the set of positive integers of the form kopo + kipi

+ • • • +k,-ip,-i, where sEIi and for each iEs, kiEIo and piEP-

The main result of the present paper shows that if P is any (non-

empty) set of primes and if F=/2\Lin Comb P, then FGZ.2 It is

well known that if P contains more than two primes and if p and q

are the two smallest primes of P, then /(j,-i)(Ç_i)ÇLin Comb P. Thus

we need only consider finite sets of primes.

We prove our theorem by constructing a Fraenkel-Mostowski

model of set theory; we employ a variation of the technique used in

[2] and [0]. As an immediate corollary of our theorem we have a

direct proof of the necessity of Mostowski's condition (M) (defined

below) for an implication of the form CiZ)~^Cin) to be provable in cr.

2. The model.

Theorem. Assume or is consistent. Let P be any nonempty finite set

of primes and let F=72\Lin Comb P. Then there is a model of

o- \J \~~} AC, FS,( Vu| 2)(C(«) h»G Y)\.s

Proof. Let a* be a together with the axiom of choice and an axiom

asserting the existence of a denumerable set of urelemente. a* is rela-

tively consistent with <r (see [2, pp. 478-479]); we shall work within

(7*.

Let 3TÍ be a denumerable set of urelemente. Define STMo to be 311

and for each ordinal number n>0, let 9TC„ = 3TCVJU {<?i'5]ilß):pEv}.

Let 9o be the group of all one-one transformations of 3TC onto itself.

By transfinite induction, if xG9TCAU9TCr (f Er¡) for some r;>0 and if

<£G9o> we "extend" <p by letting </>(x) = {<Piy)'.yEx}.

Let P= {po, pi, • ■ • , pe-i}- Let T he the subset of I0XI0 consist-

ing of all ordered pairs (i, t), where i ranges over I0 and where tEpj

if i=j (mod s). Since T is denumerable, there is a one-one corre-

spondence between T and 917. With respect to any such one-one cor-

respondence, let m,-1 he the member of 3TC which corresponds to

<i. *)•_

2 This result was also obtained, independently, by D. Pincus.

3 It was remarked in [2, p. 478] that using Mendelson's technique of [3], The-

orem 6 of [2] can be proved with "Gödel's system A, B, C replacing "<r" in the hy-

pothesis or conclusion. The same remark applies to Theorem 1 of [ô] and to our

present theorem.
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For each iEh and jEs, let qi = p¡ if i=j (mod s) and let 3TC(0

= {mi.t'.tEÇi}- Then 911 is the pairwise disjoint union of the 3Ti(,),

t£P>- Let x< be the element of go which maps rtty.t into itself iorj^i,

and which maps rrt;,f into m¿,„ for /, m£<7; and u = t + \ (mod qi). Let

9i be the subgroup of go generated by {x»:¿£P>}- If Z is a finite set

of integers and if cpEQi', then <j> is said to be Z-identical if </>(m¿,() = m<,i

for every pair (i, t) for which ¿£Z. If x£Sni, for some ordinal number

rj, then x is said to be Z-symmetric if <p(x)=x for every Z-identical

*€&.
For each ordinal number 77, we define 3C, by transfinite induction:

3Co = 9HU {0}, and for each n > 0,

x £ K, <-> ( V y £ x)(3 Í £ i,)(y £ K()

A (* is Z-symmetric with respect to some finite set Z E It).

x is said to be an Wl-element if there exists an ordinal number n

such that x£3C,. A class X is called an Wl-class if every element of X

is an 9ll-element and if there is a finite set Z of integers with the

property that for every Z-identical 0£gi, <j>(y)EX for every y£X.

If A" and Y are classes, define X Evn Y to be true iff X is an 311-element,

Y is an 3K-class and XE Y. Then, if we interpret a in a* by replacing

the primitive notions "element," "class," "£," and "0" by the no-

tions "9K-element," "3K-class," "£3Tl," and "0," respectively, all of

the axioms and theorems of a will become theorems of a*.

For a discussion of Fraenkel-Mostowski models, and in particular

for a verification of some of the axioms in these models, see [4] and

[5]. [2] and [6] discuss absoluteness in these models. The verifica-

tion of FS (called "Z(<»)") is carried out in [2] and applies to the

present model.

We now show that if w£Lin Comb P, then C(n) is false in the

model. For each such n, let ko, ki, ■ ■ ■ , &s_i be any integers for which

n = kopo+kipi+ ■ ■ ■ +ks-ip,-i. Delete the zero terms and write

this sum as

n = khpia + khph+ ■ ■ ■ + ki,pi„        0 5i io <ii< • ■ ■< iv < s.

Let

/    »    (m+l)*,-.—1 \

x„ = { U       U'    3H(i.-+i«':w£/o[-.
V j—0      l**mki. J

Then x„ is a set of n-element sets. Clearly, xn£3ïïV, moreover, x„ is

0-symmetric, and it is, consequently, in 3C2. Suppose that/ is a choice
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function on x„. Then / must be Z-symmetric for some finite ZEIo-

For mEIo, let

Rm = {ij + ls:l = mki, mki: + 1, ■ ■ ■ , (m+ l)k{j — 1;

J = 0, 1, • • ■ ,v}.

Let mo be the smallest integer m for which ZC\Rm = 0. Then for each

rERmt,, Xr is Z-identical and, hence, Xrif) =/• Let

V    (m0+l)t-,-—1

(*.)«. = U       U '    3IÏ<'.+<°>.

Now since /((x„)mo) = (x„)mo and since the 9ïl(i) are pairwise disjoint,

it follows that /((x„)mo)£3TC(r) for some unique rERm0, and, con-

sequently, that /((xn)^) =rrtr,t for some /Egr. Thus ((xn)^, mr,i)

Ef- But then (ixn)m, Xr(mr,i)) = Xr(((x„)mo, m,,t» G Xr(/) =/; since

XrC^ir.O^nir.i,/cannot be a function.

It remains to show that if ra^Lin Comb P, then C(ra) is true in the

model. Let X be a nonempty 3H-set of ra-element sets x. Then X

EKa+i\Xa for some «2:1, and X is Z-symmetric for some finite

ZEIo- Let gz be the subgroup of 9i consisting of all Z-identical maps.

Then for each <t>EQz, X =<piX) = {r¿(x) :xEX ].

We first show that

for each x E X, there is an a E x with the

(2) property that whenever <b, \¡/ E Qz and

4>ix) = ypix),    then d>ia) = ^(a).

Equivalently, we show that for each x£.X" there is an aEx with

respect to which (pEQz and #(x) =x together imply 0(a) =a.

Suppose XG3C2\3Ci and xGJ. Then the elements of x are in 3C0. If

OGx, then 0(0) =0 for every </>E9z; if m¡,iG« for some î£Z, then

0(m,-,i) =m,-,( for every <££9Z- Otherwise, x consists of ra urelemente

in 9Ho\U¿ez9TC(,). Now each 3H(i) consists of o,- elements for some

OjEP, whereas ra(£Lin Comb P. Thus for some/, x^Snt^'' is a non-

empty proper subset of 3IÏ(i). Pick any such / and any my,¡Ex. For

any 0G9z\9lyl, if <¡>imj,t)^mj¡t, then 0(m,-,¡) =my,u for some

m£s\{¡}. Thus <pixr\yiLU)) = ¡m,,,: some nty,„Gx and o — w = u — t

(mod íy)}í¿xr,3rt<>'\ and since <f>(x\MM)r\fniW = 0, it follows that

4>(x)j6x.

For any 3ÏI-set F, let 20(F) = F and for ordinal numbers £>0 let

'LliY)=Y\j{y: for some t;<£ and some z£2„(F), y Gz}. (Properties

of the 2j ( F) are discussed in [4].)
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Let 2(F) = {z:zG2f(F) for some ordinal number £}.

An element of XoT\^iY) will be called a progenitor of Y.

A transfinite induction argument shows that for any <j>EQz and

Sdl-set F, a necessary condition that <7J(F) = Y' is that F and F' have

the same number of progenitors in each SHl^, jEIo-

Now let XEKa+i\Ka for a>l, and let xEX. We may assume that

either xr>\3C0 = 0 or else that the number of elements of xC\Xo is in

Lin Comb P; otherwise, the previous argument applies. Suppose that

for <f>E§z we have0(x) =x but <pia)?ia for every aGx. Let ai Gx\3C0.

Then, surely, for some progenitor m¿,¡ of ai (and hence of x), r/>(trt,-,()

T^m.-.i. Now for every aEx, </>(a)Gx. Thus for some positive integer

hilt x\X0 must contain A,-, q^ elements, with progenitors in 9TX(<l),

which are cyclically permuted by <p. Since wÇjELin Comb P, and x

contains n elements, there must be an element a2 in x\3Co distinct

from these htt ç,-, elements. Repeat the above argument for a2 and

obtain A,-, q^ elements of x\3C0 for q^EP, A,2^ 1. These new elements

are distinct from the previous ones; again, these Atl gtl+A,-, g,-2 ele-

ments cannot exhaust x\3Co- Clearly, in a finite number, r, of steps we

will obtain zJj-i Ay <Zy distinct elements of x\3Co, where for j = l,

2, ■ • • ,r, hij^ 1 and the q,¡ are (not necessarily distinct) primes of P,

and where zZTj-1 Ay <Zy > n- This contradicts the assumption that x has

n elements and completes the proof of (2).

Define the relation R on X by Xi A x2 iff there is some <£GSZ for

which 4>ixi) =X2. R is obviously an equivalence relation on X. Choose

an element xc from each cell C of the partition X/R; choose an

element ac in each such chosen xc with the property that

whenever <j>ixc) =^(xc), <t>, ^E%z, then <£(ac) =^(ac). Let fc

= {((/>(xc), <l>iac))'<l>EQz}. Each such fc is a function with domain

C. Clearly /cG9TC<*+3. Moreover, fc is Z-symmetric because for

ir-GS*> Wc)={{Uixc), Uiac)):<i>E<èz) =fc Thus /cG3Ca+3. Let

/=Ucsx/ä /c; / is also Z-symmetric and is in SLa+z- f is the desired

choice function for X.

A finite subset ZEh and an integer nEIz are said to satisfy

condition (M) iff for every finite set P of primes, »GLin Comb P

implies Zf^iLin Comb P¿¿0.

In [5], Mostowski proves the necessity of condition (M) for the

implication CiZ)-^Cin) to hold in a by first considering the following

condition (K), which we proceed to define.

For »all letSn be the symmetric group on {l, 2, •••,»}. If g isa

subgroup of S„, if 1 á k g n, and if <p ik) = k for every <j> E %, we say that

k is a fixed-point of g. For any group 9, let g" denote the group whose

elements are those infinite sequences, (gi, g2, • • • ), whose terms



138 M. M. ZUCKERMAN

belong to 9 and which are such that almost all of the gn are equal to

the unity of 9; multiplication in 9" is defined by termwise multiplica-

tion in g. A finite subset Z of P and an nEh satisfy condition (K) if

for every subgroup 9 of S„ without fixed-points there is a group

3CC9" and a finite number r of (not necessarily different) proper sub-

groups £i, £2, - - - , £r of JC such that

¿ Ind(5C/£.) £ Z.
•=i

The model constructed in [5] proves that (K) is necessary for C(Z)

—*C(n) to hold in tr; it is then shown that if Z and n satisfy (K) they

also satisfy (M).

As an immediate consequence of our theorem we obtain:

Corollary 1. Condition (M) is necessary for the implication

(FSAC(Z))^>C(n) to hold in a.

By taking P to consist of a single prime we obtain:

Corollary 2. For each prime p, there is a model for

o- VJ {    | AC, FS, ( V n = 2)(C(n) <-> (n is not a multiple of p)}.

Thus there is a model 311 in which the set Z of integers n for which

C(n) is true in 9K as well as the set F of n for which C(n) is false in 911,

are both infinite.
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