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SETS OF LATTICE POINTS WHICH CONTAIN
A MAXIMAL NUMBER OF EDGES1

■

G. F. CLEMENTS

Abstract. How should one select an /-element subset of a

rectangular array of lattice points (points with integral coordinates)

in «-dimensional Euclidean space so as to include the largest pos-

sible number of edges (pairs of points differing in exactly one co-

ordinate)? It is shown that the generalized Macaulay theorem due

to the author and B. Lindström contains the (known) solution.

1. Introduction and statement of results. Let ra^l, ki^k2S • • •

^kn and l^iki+l)ik2-\-l) ■ • • (&„ + l)=0 be fixed positive integers.

Fn denotes the d w-tuples x = (xi, x2, ■ ■ ■ , xn) of integers Xi, O^Xif^ki,

i=l, 2, ■ ■ ■ , n, ordered lexicographically-—i.e. x<y iff Xi<yt for

the smallest integer i such that x^y,-. It will be helpful to imagine

the elements of Fn arrayed in a matrix of ¿i + l rows and 0/(^1 + 1)

columns by writing them in increasing order from left to right and

top to bottom.

Let A i denote an /-element subset of F„. An edge is an unordered

pair (x, y) of w-tuples which disagree at exactly one place. A subset

A of Fn contains the edge (x, y) if and only if xEA andy£^4. EiA)

denotes the number of edges A contains.

We now state two theorems. Theorem 1 is contained in Lindsey's

paper [7] while Theorem 2 is Corollary 3 of the generalized Macaulay

theorem [2]. The content of this paper is that these two theorems are

equivalent.

Theorem 1. max E(^4¡)=E(5¡) where the maximum is taken over

all l-element subsets of Fn and Si denotes the first I elements of Fn.

The sets A¡ for which the maximum is attained are also charac-

terized in Lindsey's paper.

In order to state the second theorem, we define the set-valued

function T on Fn by T(0)=0,
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r(x)  =   {iXi— Í,X2,  ■   ■   ■ , Xn), iXi, X2 - 1, X3,  •   ■   ■ , Xn),  ■  ■   • ,

iXi, X2,  ■   ■   ■  , Xn -  1) } C\ Fn

and call a subset H of Fn closed if and only if TiH)EH, where

TiH) = \Jxeh T(x). Notice that S¡ is closed. Finally define

a(x) = Xi + X2 + • ■ • + xn    and    a(.ff) =  ¿Z «W-
XÇ.H

Theorem 2. max a(ií¡) = a(.S¡) where the maximum is taken over all

closed l-element subsets of Fn.

It is not difficult to verify that a and E agree on closed sets; hence

aiSi) can be replaced by EiS¡) in the statement of Theorem 2. If this

is done, the similarity between the two theorems becomes even

greater. This similarity is noticed implicitly in the paper [6] of J. B.

Kruskal. More precisely, Kruskal points out that the ki = k2= ■ ■ •

= kn = l case of Theorem 1, which is contained in the papers of Harper

[3] and Bernstein [l], is analogous to a result of his [5]. (Kruskal's

result has been rediscovered by G. Katona and applied to a problem

concerning the existence of certain subsets of a finite set [4].) Ac-

tually it can be shown that the ki = k2 = ■ • • =kn = l case of Theorem

2 follows from Kruskal's result and that Kruskal's result contains the

&i = &2= • • • —kn — i special case of the generalized Macaulay the-

orem.

2. The equivalence of Theorems 1 and 2. It is clear that Theorem 1

implies Theorem 2 since if one takes the maximum only over closed

sets he has

aiSi) á max aiHi) = max £(#0 g EiSi) = a(5¡).

Conversely, assume Theorem 2 and suppose that At is maximal:

EiAi) =max EiAi). We show that A¡ can be replaced by Si without

decreasing the number of edges. This is obvious for 1-tuples. Assum-

ing it is true for ¿-tuples, i=l, 2, • • • , (n — 1), we consider ra-tuples.

For a subset G of Fn, let G< denote the elements of G which begin with

i, i — 0, 1, • ■ ■ , ki; thus the elements of G,- appear in the ith row of

Fn. Let oí denote the number of elements in iAi)¡, i = 0, 1, ■ ■ ■ , ki.

One easily convinces himself that it is no loss of generality to assume

that aojSaià • ■ ■ ¡±akl since Ai could be replaced by a set having

EiAi) edges for which this is true. We will say that an edge (x,y) in

Ai is an ii,j) edge iigj), if_x£(2¡)< and yE(Äi)i- If JV(U) (Â~i) is the
number of ii,j) edges in iA{), then
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E(Ii) = ¿ £ N(i,k^r)(Äi).
r-0 i-0

If .41 is replaced by the set A[ consisting of the first a< elements of

(Fn)i, i = 0, 1, • • • , ki, no summand is decreased. That Na.a (A',)

= N(i,ii (Ai) follows from the k2, k3, ■ ■ ■ , kn case of the induction

hypothesis; that A(;,/) (^40 = A«,,) (Ai) if i<j follows from the fact

that N(i,j) (Ai) ^a¡ (since (Ai)¡ has a¡ elements) while Ntij) (A'¡) =a¡

(since the pth elements in (A[)i and (A{),- constitute an edge, p = l,

2, • • ■ , a¡; we are using here that a^af). Also A\ is closed since if x

is the pth element in (A[)i, l^p^ai, then each element z£T(x) is

either a smaller element in (Pn). and therefore in (A',)i since (A[)i is

the first a¡ elements of (Fn)i, or z is the pth element of (P„)¿_i and

therefore in (^4¡')¿-i since a¿_i^a¿.

Thus A i has been replaced by a closed set A[ having at least as

many edges. If we now replace A'¡ by Si we again do not decrease the

number of edges in view of Theorem 2 and the fact that a and E agree

on closed sets. This completes the induction. The equality max P(^4j)

— E(Si) now follows from

a(Si) = E(Si) ^ max E(Ai) = E(A~i) ̂  E(S¡) = a(St).
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