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SOLUTION OF THE HUGHES PROBLEM FOR
FINITE ^-GROUPS OF CLASS 2p-2

I. D. MACDONALD1

Abstract. In this paper the Hughes conjecture for finite p-

groups is proved in the case of groups which are nilpotent of class

2p-2.

If G is a group and p is a prime number then the Hughes subgroup

HpiG) of G is by definition the subgroup generated by all elements of

G that do not have order p. The conjecture of Hughes was that if

G>HpiG)>l then HviG) must have index p in G; see [ó]. Hughes

showed that the conjecture is true for p = 2 and all G, and Straus and

Szekeres [lO] proved it for p = 3 and all G. Hughes and Thompson

[7] proved the corresponding result for all p and for G finite and

nonnilpotent.

The most interesting cases which remain are those in which G is a

finite 7^-group with p ^ 5 ; throughout this note we shall take G to be

a finite £-group, and our results will be of most significance when

p¡t5. We may remark at this point that it is a nontrival exercise to

construct a £-group GP for each prime p such that Gp>HPiGp) > 1.

Though Wall [ll] has shown by means of an example that the

Hughes conjecture is false for finite 5-groups and p — 5,it is neverthe-

less of some interest to find sufficient conditions for the conjecture to

hold. Thus Zappa [12] has shown that all is well when G is nilpotent

of class p. The main result of the present note is a substantial

strengthening of this:

Theorem. The Hughes conjecture is valid for finite p-groups of

nilpotency class 2p — 2.

It seems likely to us that class 2p — 2 cannot be replaced by a much

greater class without falsifying the theorem.

The proof of this theorem depends heavily on the main result of

[8], which we state again in the interests of clarity:

Theorem [8]. If \G:HPiG)\^p2, V„(G)£t(G) and y2p(G) = l,
thenVPiHpiG)r\y2iG)) = l.
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Here VP(G) is the subgroup of G generated by all the pth powers in

G, f (G) is the centre of G, and yn(G) is the «th term of the lower

central series of G for each n 5:1. By definition G is nilpotent of class n

if and only if 7„+i(G) = 1. The symbol | G:H\ denotes the index of the

subgroup H in G.

Suppose that G is a finite p-gronp of class 2p — 2 such that the H ughes

conjecture is not valid for G and p. We prove the theorem by deducing

a contradiction. Thus we have \G:HP(G)\ ~^p2 and HP(G)>\ at the

outset. Next let A be a normal subgroup of G with index p in VP(G)

and put G' = G/N. Since HP(G/N) ^HP(G)/N we have | G':HP(G') \
^p2 and PP(G')>1, with of course VP(G') ^f(G'). The Hughes

conjecture does not hold for G', and by dropping the prime we may

and shall consider G with VP(G) áf (G) in place of G'. The theorem of

[8] shows at once that Vp(HP(G)r\y2(G)) = 1 for this G.

The rest of the proof is very like that of the theorem in [8], with

the difference that the theorem of [8] itself now plays the role of the

lemma of [8]; the formalism is the same in the two cases. We shall

however give the full details.

Let yEHp(G) and let xEG with x£P„(G). Then x» = (xy)p = 1, and

y-PX-P(Xy)P =  y-P.

Commutator collection—for facts about which see [3]—can be ap-

plied to y~px~p(xy)p. The first result we obtain is that y~pxp(xy)p

Eyi(G)pyP(G). Commutator collection theory tells us much more,

however. The relevant commutators in 72(G) all have y as an entry, so

they lie in Hp(G)(~\y2(G) and by a fact stated earlier they all have

order p or 1. We conclude that y~p£7P(G); indeed y~p is a power

product of certain commutators in [x, y\, each having at least p

entries. As before these commutators in yP(G) have order p or 1. Note

that7P(G) is abelian since G has class 2p — 2.

Since I G:HP(G)\ ~^p2 we can find elements xi, x2 of G such that if

x"x2EHp(G) with O^a, ß<p then « = ¿3 = 0. We now put x=x"x2

where O^a, ß<p and not both a and ß are 0; later we consider all

values of a and ß with these restrictions, but at present a and ß are

fixed. Commutator expansion then gives an expression for y~p which

is a power product of commutators each having at least p entries

from {y, x", x%\ and at least one entry from [y\. Indeed repeated

expansion gives y~p as a power product of commutators having at

least p entries from {y, Xi, x2}; at least one entry in each is y, and

each has order p or 1.

The crux of the matter is the exponent of each commutator with

entries in  {y, Xi, x2}. We lose no generality in assuming that all
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commutators are in a basic form, and (since G has class 2p — 2) at most

2p — 3 entries are from {xi, X2}. Then, as shown in [8], collection

theory indicates that the exponent of each commutator is some

polynomial in {a, ß} whose total degree does not exceed 2p — 3. Hence

we have

where the c,;- are power products of commutators with at least p

entries from \y, Xi, X2}, and the product is taken over all nonnegative

*, j with 1 g i+j ú2p-3.
As a and ß range over their possible values we obtain a (multi-

plicatively written) system of linear equations in the d¡ and yp with

integers modulo p for coefficients. In the lemmas which follow it is

made clear that these equations imply yv — l and so HPiG) = l, a

contradiction which completes the proof of the theorem. We remark

that the lemmas are written in additive notation and that at this

stage we use in the essential way the fact that G has class 2p — 2.

Lemma 1. If the equations ¿Zisj£p-iß'Zj = 0 hold for l^ß^p — l

over the field of p elements, then z„_i = 0.

Proof. Consider the matrix involved in this system of p — 1 linear

equations in 21, • • ■ , zp_i. As Brisley shows in [l, p. 66] it can be put

into a triangular form by certain permissible row operations, and

from this form it is evident that each z¡ is 0. In particular zp_1 = 0.

Lemma 2. If the equations ¿Zosí+jszp-s ofß'za = 0 hold for 0^a<p,

0^ß<p and not both a and ß equal to 0, over the field of p elements, then

Zoo — 0.

Proof. We intend of course that neither i nor j takes negative

values. Fix a at some nonzero value, put ß = 0 in the equations, and on

subtraction we have

¿z     «y««- 0.
lSf+i's2p—3 ; ii0,f>0

Lemma 1 therefore gives Sos¿sp-2«*z,-,p_i = 0 for each nonzero a

(note that Y2j>-i(G) = 1). On applying Lemma 1 again we have

Zoip-i = 0. But substitution of a = 0 gives ^osjs2P-3 ß'Zoj — 0 for

l^ß^p — 1. This time Lemma 1 gives z0o + z0,p_i = 0, and we con-

clude that zoo = 0. This proves Lemma 2, and with it the theorem.

We conclude with some remarks on the work of Hogan and Kappe

[S], who show that the Hughes conjecture is valid for finite meta-
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belian ^-groups and all primes p. Their proof may be much shortened

by noting that the Hughes conjecture is correct for finite ^-groups of

class p-\-l, by the theorem above. We indicate yet another argument.

Let G be metabelian with 77„(G) > 1 and | G:HviG)\ ^p2;a.s usual we

assume that Fp(G)^f(G). Since G/VPiG) is a metabelian group of

exponent p it satisfies the law (x, ip — l)y) = l by a theorem of

Meier-Wunderli [q]. Hence the law (x, (p — l)y, z) = l holds in G. It

now follows from a theorem of Gupta and Newman [2 ] on metabelian

groups that G has class p, and at this point the Zappa theorem gives

the required result.

We might ask whether a finite metabelian £-group can have any of

the properties (Pi) mentioned in [8]. We have just proved that it

cannot have (PI), which at once implies the impossibility of (P2) and

(P3). Elementary commutator arguments dispose of (P4). However

we have not managed to do anything with (P5) ; that is to say we are

unable to solve the problem of Hobby [4] for finite metabelian p-

groups.
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