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COMPACT TOTALLY 3C ORDERED SEMIGROUPS

J. H. CARRUTH AND C. E. CLARK1

Abstract. Compact totally 3C ordered semigroups are charac-

terized. Each such semigroup is abelian and is, in fact, a closed

subsemigroup of an /-semigroup. Several questions are posed about

(algebraic) semigroups which are naturally totally (quasi-)

ordered.

The structure of Psemigroups (or standard threads) has been

known for some time [3], [5], [lO]. One of the first steps in deter-

mining this structure was made by Faucett in showing that any I-

semigroup is totally 3C ordered [5, Lemma 2]. In this paper we give a

complete description of all compact totally 5C ordered semigroups. A

consequence of the structure theorem is that each such semigroup is a

closed subsemigroup of an Psemigroup and is hence abelian. The

structure theorem for Psemigroups is a special case of our theorem.

Several questions are posed at the end of the paper.

An Psemigroup is a topological semigroup on an arc in which one

endpoint acts as an identity and the other acts as a zero. If 5 is a

semigroup then 51 is S if S has an identity and 51 is 5 with an

identity adjoined otherwise. Following [7], we define the following

quasi-orders on a semigroup 5:

x g (£) y if Slx E Sly,

x g (flt) y if xS1 C yS\

x = (OC) y if Sxx E S*y   and    xS1 E yS1,

x^(S))y iiS1xS1ES1yS1.

If S is compact, each of these quasi-orders is a closed subspace of

5X5. If X denotes one of Green's equivalence relations [7], then it is

clear that K=|(3C)A[^(K)]-1. We say that 5 is totally X quasi-

ordered if each pair of elements of 5 compare relative to ^ (X). Also,
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5 is totally X ordered if 5 is totally 3C quasi-ordered and ^ (3£) is

antisymmetric. If 311 is a relation on S we say that 9TÍ is left com-

patible if (zx, zy)E<3& whenever (x, y)G3TC and zES. Right com-

patibility is defined dually and we say that 91Î is compatible if it is

both left and right compatible. Of course, a transitive relation 3TI is

compatible iff (x, y)G9TC and (z, w)G3TC imply (xz, yw)G3TC- The

minimal ¡deal of a semigroup S is denoted by MiS). The closure of a

set A is denoted by A*. If xES then 0(x) will denote the smallest

subsemigroup of 5 containing x and T(x) will denote 0(x)*. Recall

that Sis monotheticif 5 = T(x) for some xES [ó], [8].

The main theorem (Theorem 1) will be preceded by seven lem-

mata, most of which are slight modifications of results already in the

literature. The first lemma (and its dual) is an extension of A 3.19

and A 3.20 of [7] and is essentially due to Rothman [l0]. Parts (i),

(ii), (iv), and (v) are proved in [7] and (iii) is an immediate con-

sequence of (ii).

Lemma 1. Let S be a compact semigroup which is totally £ quasi-

ordered. Then

(i) xS1ES1xfor all xES.

(ii) S'x = SlxS\foralixES.

(iii)   á(JB)=á(S».
(iv)  JB = ».

(v)  £ is a congruence.

Lemma 2. Let S be a compact totally 3C quasi-ordered semigroup. Then

£ (3ß) - á(¿3) - á (<R) - À (2D) and hence ^ (3C) is compatible, 3C = £

— (R = 3D, 50. is a congruence, and Sl is normal.

Proof. This is an immediate consequence of Lemma 1.

The next lemma is analogous to Theorem 2 of [4].

Lemma 3. Let S be a compact totally £ ordered semigroup with

exactly one idempotent e. Then e acts as a zero for S.

Proof. Since M(S) is a paragroup [7, A 1.23] and 5 contains

exactly one idempotent, MiS) is a group. However, as S is totally £

ordered, each subgroup of 5 is trivial. It follows that M(5) is a single

point and that point is a zero for S.

The next lemma is analogous to Lemma 2.5 of [4].

Lemma 4. Let S be a compact totally £ ordered semigroup with exactly

one idempotent. Then S is a compact monothetic semigroup with zero.
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Proof. According to Lemma 3, the unique idempotent of S is a

zero for 5. Let ¿» be the largest element of 5 relative to the

closed total order â(£)- Let a be an arbitrary nonzero element of

5. Since 0 <(£) a ^(£) ¿>, {¿»"} converges to 0 ([ó] or [8]), and

{xG«S|x <(£)a} is open containing 0, there exists a positive integer

n such that p" <(£) a ¿(£) p. Let r he the unique positive integer

such that ¿»r+1 <(£) a ^(£) ¿>r. We show that a = pr. Assume that

a^pr. Then a = bpr ior someb ES. Since b á(£)¿>, a = bpr ^(£) pr+1.

But ¿»r+1 <(£) a, a contradiction. Hence a = pr. Therefore, 5\{o]

E^ip). Now 0Gr(¿») and so T(¿») = S, completing the proof.

Note. It is well known that a compact monothetic semigroup with

zero is either a finite cyclic semigroup with zero or is isomorphic to

the subsemigroup T(l/2) of the unit interval under ordinary multi-

plication (again [ó] or [8]).

Lemma 5. Let S be a compact totally 3C ordered semigroup with

exactly one idempotent. Then S is a compact monothetic semigroup with

zero. In particular, S is abelian.

Proof. In view of Lemma 4, it suffices to show that S is totally £

ordered. Lemma 2 yields that 3C = £; obviously 5 is totally £ quasi-

ordered, and it follows immediately that ^ (£) is a total order.

Notation. If 5 is a compact totally 3C ordered semigroup and x,

yGSthen [x, y] will denote {zGS|x á(3C)z ^ (3C) y}. Clearly [x,y]

is compact for each x, y ES.

Remark. For any semigroup S, Xs^iSXS) =3Cs- It follows that

5is totally 3C ordered iff S1 is totally 3C ordered.

The next lemma should be compared with Lemma 4 of [5] and the

corollary on page 84 of [3].

Lemma 6. Let S be a compact totally 3C ordered semigroup with maxi-

mum element p. If e is an idempotent of S and xES then [0, x] is a

subsemigroup of S, [0, e] has identity e, and [e, p] is a subsemigroup of

S with zero e. If aE [0, e] andbE [e, p] thenab = ba = a.

Proof. Lemma 2 insures that ^ (3C) is compatible and it follows

immediately that [0, x] and [e, p] subsemigroups of S. That e acts

as an identity for [0, e] is a direct consequence of the definition of

^ (3C). Now suppose that e ^ (3C) y. Since e ^ (3C) e we have e ^ (3C) ye.

Moreover, y ^ (3CsO 1 implies ye ^ (3C) e in view of the above remark.

Hence ye = e and dually ey = e. Suppose now that oG[0, e] and

bE[e, p]. Then

ab = iae)b = aieb) = ae = a = ea = (6e)a = biea) = ba.
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Terminology. Any semigroup isomorphic to the unit interval with

ordinary multiplication will be called a usual interval. Any semigroup

isomorphic to the interval [1/2, l] with multiplication xoy

= max {l/2, xy\ will be called a nil interval.

Lemma 7. Let S be a compact totally 3C ordered semigroup. Let e and

f be idempotents in S such that e <i3Q.)fand [e,/]P\£(5)= {e,/}. Then

[ e, f] is a subsemigroup of S and is itself totally 3C ordered. Moreover,

[ e, f] is either a usual interval, a nil interval, or a compact monothetic

semigroup with zero e having isolated identity f adjoined.

Proof. That [e,f] is a subsemigroup of S with zero e and identity

/ follows immediately from Lemma 6. It is not difficult to see that

the 3C quasi-order on [e,f] is the intersection of the 3C quasi-order on

S with [e, f]x [e, f] and it follows that [e, f] is totally 3C ordered.

Case 1. {/} is not open in [e,f]. In this case there are many ways

to see that [e,f] is connected. For example, one could use the result

of Mostert and Shields [ll] to start a one parameter semigroup in

[e, f] at / and extend it to a connected subsemigroup containing e.

Probably the easiest way to obtain a connected subset of [e, f] con-

taining e and / is to consider the closure of the union of all 0(x) with

e < (5C) x < (3C) / (see [l ] and [7, Exercise 1, p. 133]). Once we obtain

a connected subset of [e, f] containing both e and /, a simple argu-

ment, using the fact that [e, f] is totally ordered, yields that [e, f]

= C. Hence, [e, f] is an 7-semigroup with exactly two idempotents.

It now follows from [3], [5], and [lO] that [e,f] is either a usual or a

nil interval.

Case 2. {/} is open in [e,f]. In this case [e, f) is a compact totally

3C ordered semigroup with exactly one idempotent e. Hence, by

Lemma 5, [e,f) is a compact monothetic semigroup with zero. There-

fore, [e, f] is a compact monothetic semigroup with zero e having

isolated identity/ adjoined.

Recall [3] that the contact extension of a semigroup 5 with iden-

tity 1 by a semigroup T with zero 0 is the semigroup (5V^T)/p where

multiplication in S^JT is defined by

x o y = xy

= x

= y

and p is the congruence which identifies 0 with 1 in SW7\

Theorem 1. Let S be a compact totally 3C ordered semigroup with

maximum element p and maximum idempotent e. Then [O, e] is iso-

if either x, y ES or x, y ET,

if x E S and y G T,

if x G T and y G S,
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morphic to a generalized hormos GHorm(P(5), Sx, mxy) where Sx is

either a usual interval, a nil interval, or a compact monothetic semi-

group with zero having isolated identity adjoined [7]. The entire semi-

group S is isomorphic to the contact extension of [0, e] by [e, p] and

[e, p] is a compact monothetic semigroup with zero e. Moreover, each

semigroup constructed in the above fashion is a compact totally 50,

ordered semigroup.

Proof. That [0, e] is isomorphic to GHorm(P(5), 5X, mxy) follows

from Lemmas 6 and 7 and from the proof of Theorem 3.1 of [2]. We

point out that for each/GP(5), S¡= }/} if/ is not isolated from be-

low in E(S) and Sf= [g, f] where g = sup([0, f)f~\E(S)) otherwise.

It follows from Lemmas 5 and 6 that [e, p] is a compact mono-

thetic semigroup with zero e. That 5 is isomorphic to the contact

extension of [0, e] by [e, p] follows easily from Lemma 6. The con-

verse is obvious.

One could also describe a compact totally 3C ordered semigroup

(with identity) as an ordinal sum of a compact totally ordered set of

half-open ligaments and one element semigroups where one allows as

ligaments usual intervals, nil intervals, and compact monothetic

semigroups with zero having isolated identity adjoined [3, p. 86-88].

Corollary 1. Pac¿ compact totally 3C ordered semigroup is isomor-

phic to a closed subsemigroup of an I-semigroup.

Corollary 2. Pac¿ compact totally 3C ordered semigroup is abelian.

Works related to the results of this paper may be found in [9] and

[13]. Finally, we pose the following questions:

1. If 5 is a totally 3C quasi-ordered algebraic semigroup, must

= (3C) be compatible? Must 3C be a congruence? What if 5 is totally

3C ordered?

2. If 5 is a totally 3C ordered algebraic semigroup, must 5 be

totally £ ordered?

3. If 5 is a totally £ ordered algebraic semigroup, must 5 be

totally ¡JC ordered? We do not know the answer to this even if 5

is compact.

4. If 5 is a totally 3C ordered algebraic semigroup, must 5 be

abelian ?
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