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V ASYMPTOTES FOR THE KLEIN-GORDON EQUATION

STUART NELSON

Abstract. An approximation a(x,t) is obtained for solutions

u(x,t) of the Klein-Gordon equation. a(x,t) can be expressed in

terms of the Fourier transforms of the Cauchy data and it is shown

that ||a(-,/)— tt(-,t)||»—>0 as /—»°o. This result is applied to show

how energy distributes among various conical regions.

A wide class of solutions to the Klein-Gordon equation

»   d2u      d2u

h dx\ ~ dt2 " U

can be written in the form

«(*, i) = (2tt)-"/2 f e"-»[F(y) cos ty/iX + y2)

+ Giy) sin tVil + y2)]dny

= i2ir)-"l2J  e<*-*Ür(y) exp[it\/il + y*)]

+ <i>iy) exp[-»V(l + y2)]]dny

where F = \j/-\-(¡>, G = ii4s—<p) are in 72(i?n) and the integral over R" is

interpreted in the sense of Plancherel's theorem. Our main result is

Theorem 1. Define a(x, t) =0 for \x\ >t and for |x| <t define

„CO , |e.,,¥(_^) + e-„,,,^_i_)|p(l, 0,

0(x, t) m nir/4 + Vit2 - x2),        p(x, t)   m tit2 - x*)-***»*

where ^i and <p are the same L2 functions as in (1). Then

\\ui-, t) - ai-, l)\\l=J   | «(*, t) - aix, t) |V*-*0

as t—Kx>.
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Before starting on the proof of Theorem 1 we mention a corollary.

Define

xix, /) = 1        if | x |   < I,

= 0       otherwise.

Corollary 1.

iimiuM(-,oii: = ikii:+Ni: = (iiAii:+iiGii:)/2.

Proof. By Theorem 1, lim,^.M||(l— x)u( •> ¿)||2 = 0 and hence

Um||«(-,0||2-||x«(-,/)|iI = 0.
(-.00

Thus the corollary follows from the fact (see Brodsky [l ]) that

Urn ||«(-, t)\\\ - ([|F||* + ||G||*)/2.

Remark. Let V„ denote the volume of the unit ball in Rn so that

X«( -, t) 2^ F„/"||x«( -, 0||«- Applying the corollary one sees that if

Xu( •> 0 oo = o(/_"/2) as /—»co then w = 0, a special case of a result by

^ittman [3].

The above corollary can be extended to the case where x is re-

placed by the characteristic function of other cones (see Corollary

1'). Theorem 1 will be deduced from Theorem 1' below. The proof of

Theorem 1' is based on

Lemma 1. Define

Wtix) = (2x)-"'2 f e*-» exp[-i/V(l + y2)](l + y*)-Wr»l*d»y.

Then,for every fEL^R") and\ERn,

lim <»/V"'4exp[tV\/(l + \2)]Wt*f(-) =/(X).
<-» W(l  + X2)/

Proof. In [5] it is shown that for t> 0,

(2) Wtix) = f--/2e-i'"/4 exp[-V(x2 - t2)] + Rt(x)

where ||Ai||0O = O(/_1_n'2) as /—»<». By y/ix2 — t2) we mean the value

that lies on the positive imaginary axis when | x| <t and on the posi-

tive real axis when |x| >i. Since ||A,||0O = O(i~1_n/2) it is clear that

tnl2\\Rt */||. = 0(/-1) and hence
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)]Rt*f[-1 = 0.n    JW(i + \2)/
lim lnl2einTlitxp[it^/(\ + X*

W(l + A2),

Thus to complete the proof of the lemma we must show

it
lim (2 '

V(l + X2)
7r)-»/2Jexp(

= (27r)-"/2 f e-iX-/(x)¿"x a«/(X)

\t

V(i + x2)
- A)f(x) d"x

But this is a consequence of Lebesgue's dominated convergence

theorem because

lim
it

A
xt

V(i + x2)
■)■ i\ ■ x.

i-*- V(i + x2)

For <pEL2(R") define

(3) P «<*>(*) = (27r)-"/2 f efa-»exp[-t/\/(l + y2)]<t>(y)dny.

Corollary 2. If there exists fELi(Rn) such thatJÇK) = (1+X2)<n+2)M

•^(y) /¿era

(i)      \\U4\. = (2T)-"'í||/||x|!»rJU~ (27r)-«/2||/||1r-/2    <u <-> oo,

Xi
(ii) lim /»/*«<<»<*.«>

(-»so

^(-777TT¡t) =^ = ^ + a2)("+2)/V(X),
W(l + X2)/V(l + X2),

w&ere a(X, /) = »ir/4-N/V(l +X2)-

Proof. Both (i) and (ii) follow easily from the fact that

U¿(*) = (2x)-"'2 f e*»> exp[-tV(l + ^2)](1 + X2)-<"+2>/4/(X)á"X

Wt(x - y)f(y)d"y m Wt*f(x).

Remark. The proof of Corollary 2 follows the approach used by

Brodsky [2 ] and Segal [7, pp. 95-98] to obtain bounds like that given

by (i). Recently, I became aware of a different approach by Littman

[4] which when applied to the present situation yields (i) and (ii)

with different assumptions on cj>. Using Littman's approach Theorem

1 can be extended to more general situations (see [ó]).
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Motivated by  (ii)  of Corollary 2 we define an approximation

At(pix) to Uiqbix) by requiring

(4)    *»'V<x-".rl(*(--J = (1+ X2)("+2"V(a),   X E R", t > 0.

To see how this works out consider the transformation

Xt
Tt:X-*x =

VU + x2)

that maps R" onto the ball |x| <t. Since x2=X2/2/(l+X2) we have

X2(i2-x2)=x2 and hence T;1\x->\ = x/Vit2-x2). Taking X= T;\x)

in (4) and multiplying by t~"l2e~ia gives

/ x2    \ (»+*)/«

At<pix) = expt-ioirrK*), 0 Ir»'*-ji +--[■        <píTtxíx))
{       t2 — x2;

(5)

= e-«(*.')p(x, r)<M——-), |x|   < /,
\V(*2 - x2)) '    '

where 0 and p are the functions defined in Theorem 1.

Theorem 1'. For <j>EL2iR") define Ut<t> and Atqb by (3) and (5).

Then

(0 Mk.HMIHIM«.
(ii) lim1^o||£/1cp-.4!<p||2i( = 0,

(iii) \imt^f\x\>t\ U4>{x)\2dx = 0,
where

iwi...-if  i/(*)n41/2.
W |i|<t /

Proof. It is not difficult to check that the Jacobian of Tt is

r)(xi, ■ ■ ■ , xn)
-^-'—{ = /-(i + \2)-o+2>/* = p-2(7\(a), 0.
o(Ai, ■ • ■ ,Xn)

Thus by the change of variable theorem for multiple integrals

(6) IWIÎ.I = / \f(UX)) |V5(7((X), t)d\.

Taking /= A t<f> in (6) we obtain the left-hand side of (i). The other
half of (i) is Parseval's equality.

To prove (ii) let e>0 and choose <p£C"(i?n) such that \\<p— <f||2

<e/3. Applying (i) torp — <£ we have
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\\Ut4, - Ut$\\2,t = \\U¿ - Ut$\\2 = \\A4 - Aó\\t,t = H« - ¿||*

Thus

||tf¿ - il^ll,., á \\U^ - Ut$\\2,t + \\U4 - Aà\\,,t + \\A¿ - At<p\\2,t

< e/3 + || U¿ - At$\\2,t + e/3,

so to prove (ii) we need only show there exists r such that t>r

implies || Ut4>—Atqy\2, (<e/3. Since this amounts to proving (ii) with

<p replaced by <b~, we simply assume </>£C"(Pn).

Applying (6) we have

\t       \ /       \t       \)2

l^-^lî.«-/|^(^iT^)-^(,V(i + x2)/ W(i + x2)/|

(7) -p-2(Tt(\),t)d»\

e-<a<x'()b(X) -<b(\)]\2d"\
/

where

g,(\) = ei«<*.«f/2(l + \y*+»i*Ut<l>(-V
\V(1+X2)/

Clearly || Ut<b\\l, =f\ gt(K) | 2¿nX and hence

(8) y|t ^ hm* = IMN-
Since <t>EC" (Rn) part (ii) of Corollary 2 can be used to conclude that

for every X£Pn

(°) lim gt(X) = d>(\).
t—¥CO

An application of Fatou's lemma and Egoroff's theorem shows that

(8) and (9) imply limt-.00||gi — <A||2 = 0 which in view of (7) establishes

(ii).
To prove (iii) we must show lim(-»o|| Z7<#||1 —1| Z/i^||l. i = 0 which is

obvious from (i) and (ii).

Proof of Theorem 1. Since

u(x, I) = Urf(-x) + Ut<b(x),       a(x, t) = Atf(-x) + Att(x),

Theorem 1 follows immediately from Theorem 1'.

Let r be a cone inside the cone {(x, i):|x| <t\. That is, assume

(x,/)£l implies |x| <iand (sx, si)£rfor all s>0. Put
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B = i-:(x, 1) £ rl
lV(l - x2) )

and let /3(X) be the characteristic function of B. Then the charac-

teristic function yix, t) of T is zero for | x| >t and satisfies

yix, t) = ßo TtKx) = ß( X_       J    for | x |   < t.

Corollary 1'. Let yix, t), B be as above and let uix, t), <p(y), \piy) be

as in Theorem 1. Then

Um ||y«(-,0||í = f k(-x)|2+ |*(x)|Vx.

Remark. Similar expressions can be obtained for the kinetic and

potential energies ||'yz£tj[i> |[7M||2+22 ||7M*,-||2 since ut and uXi can also

be written in the form of equation (1). This gives an extension of the

Virial theorem stated in Brodsky [l].

Proof. By Theorem 1 it suffices to prove the corollary with m(x, t)

replaced by a(x, t). When |x| <i we have

and hence, by (6),

hai;t)\\l =JßiX) | e<a(MV(-X) + e^'V) \Vx.

Since    | eia^+e~ia(t>\2 = | \p\ 2+1<p| 2-f-e2''°uV^+e-2i'Ii?<p    the    corollary

follows from

Lemma 2. For i£L1{Rn) define 7/(0 =/exp[í'í/\/(l+X2)]/(X) ¿"X.

Fäcm limi i|^.oo7/(0 = 0.

Proof. Since Cc(i?n) is dense in 7'(i?n) and since | 7/(/)—7„(/)|

= 11/—g||i i* suffices to prove the lemma when/ is continuous and has

compact support. Switching to spherical coordinates gives

7,(0 =   f °° exp[*f/V(l + r2)]Fir)dr,        Fir) = r-» f     f(ry)dS(y).
Jo J \v\-l

Applying the change of variable u — l/\/(l +r2) yields
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r1                              /V(i - «2)\       i
Ifit) =     ««-*(«)<*«,      *(«) = f(—--) •

Since \/(l — m2) íW6C((0, l]), the lemma follows from the Rie-

mann-Lebesgue theorem.

Remark on Lp behavior. By Holder's inequality

||7«(-,<)IÍ2^||7(-,í)||s||t«!(-,í)||,'

= (||t(-)i)||/)(1"2/1|t«(-,0||:

where 1 —l/q = l/q' = 2/p. Thus Corollary 1' gives a lower bound for

lim infí-*0<J¿n/2/~n/p||7M( -, 0||p. p^2, which is positive unless <p(K) and

ypi — h) vanish forAG-B.

On the other hand, by using Corollary 2(i) and the estimate

||/||^ H/fll/llr2, 2 ̂ p< » one can show

|(«(-, 0||, = Oit-"'2?'*),       \\ui-, t) - ai-, 0||, = o(t-W)

as t—>=o, provided <¡> and yp satisfy the condition of Corollary 2.
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