L2 ASYMPTOTES FOR THE KLEIN-GORDON EQUATION

STUART NELSON

ABSTRACT. An approximation a(x,t) is obtained for solutions u(x,t) of the Klein-Gordon equation. a(x,t) can be expressed in terms of the Fourier transforms of the Cauchy data and it is shown that $||a(\cdot,t)-u(\cdot,t)||_{x\to 0}$ as $t\to\infty$. This result is applied to show how energy distributes among various conical regions.

A wide class of solutions to the Klein-Gordon equation

$$\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} - \frac{\partial^{2} u}{\partial t^{2}} = u$$

can be written in the form

$$u(x, t) = (2\pi)^{-n/2} \int e^{ix \cdot y} [F(y) \cos t \sqrt{(1 + y^2)} + G(y) \sin t \sqrt{(1 + y^2)}] d^n y$$

$$= (2\pi)^{-n/2} \int e^{ix \cdot y} [\psi(y) \exp[it\sqrt{(1 + y^2)}] + \phi(y) \exp[-it\sqrt{(1 + y^2)}]] d^n y$$

where $F = \psi + \phi$, $G = i(\psi - \phi)$ are in $L^2(\mathbb{R}^n)$ and the integral over \mathbb{R}^n is interpreted in the sense of Plancherel's theorem. Our main result is

THEOREM 1. Define
$$a(x, t) = 0$$
 for $|x| > t$ and for $|x| < t$ define

$$a(x, t) = \left\{ e^{i\theta(x, t)} \psi \left(\frac{-x}{\sqrt{(t^2 - x^2)}} \right) + e^{-i\theta(x, t)} \phi \left(\frac{x}{\sqrt{(t^2 - x^2)}} \right) \right\} \rho(x, t),$$

$$\theta(x, t) \equiv n\pi/4 + \sqrt{(t^2 - x^2)}, \quad \rho(x, t) \equiv t(t^2 - x^2)^{-(n+2)/4}$$

where ψ and ϕ are the same L^2 functions as in (1). Then

$$||u(\cdot, t) - a(\cdot, t)||_{2}^{2} \equiv \int |u(x, t) - a(x, t)|^{2} d^{n}x \to 0$$

as $t \rightarrow \infty$.

Received by the editors March 16, 1970.

AMS 1968 subject classifications. Primary 3516, 3576; Secondary 4240, 8135, 8335. Key words and phrases. Klein-Gordon equation, Cauchy problem, asymptotic behavior, L^{∞} decay, L^2 approximation, energy in conical region, Virial theorem, Riemann-Lebesgue theorem.

Before starting on the proof of Theorem 1 we mention a corollary. Define

$$\chi(x, t) = 1$$
 if $|x| < t$,
= 0 otherwise.

COROLLARY 1.

$$\lim_{t\to\infty} \|\chi u(\cdot,t)\|_{2}^{2} = \|\psi\|_{2}^{2} + \|\phi\|_{2}^{2} = (\|F\|_{2}^{2} + \|G\|_{2}^{2})/2.$$

PROOF. By Theorem 1, $\lim_{t\to\infty} ||(1-\chi)u(\cdot, t)||_2 = 0$ and hence

$$\lim_{t\to\infty} \|u(\cdot,t)\|_{2}^{2} - \|\chi u(\cdot,t)\|_{2}^{2} = 0.$$

Thus the corollary follows from the fact (see Brodsky [1]) that

$$\lim_{t\to\infty} \|u(\cdot,t)\|_{2}^{2} = (\|F\|_{2}^{2} + \|G\|_{2}^{2})/2.$$

REMARK. Let V_n denote the volume of the unit ball in \mathbb{R}^n so that $\|\chi u(\cdot,t)\|_2^2 \leq V_n t^n \|\chi u(\cdot,t)\|_{\infty}^2$. Applying the corollary one sees that if $\|\chi u(\cdot,t)\|_{\infty} = o(t^{-n/2})$ as $t\to\infty$ then u=0, a special case of a result by Littman [3].

The above corollary can be extended to the case where χ is replaced by the characteristic function of other cones (see Corollary 1'). Theorem 1 will be deduced from Theorem 1' below. The proof of Theorem 1' is based on

LEMMA 1. Define

$$W_t(x) = (2\pi)^{-n/2} \int e^{ix \cdot y} \exp[-it\sqrt{(1+y^2)}] (1+y^2)^{-(n+2)/4} d^n y.$$

Then, for every $f \in L^1(\mathbb{R}^n)$ and $\lambda \in \mathbb{R}^n$,

$$\lim_{t\to\infty} t^{n/2} e^{in\pi/4} \exp[it/\sqrt{(1+\lambda^2)}] W_t * f\left(\frac{\lambda t}{\sqrt{(1+\lambda^2)}}\right) = \hat{f}(\lambda).$$

PROOF. In [5] it is shown that for t > 0,

(2)
$$W_{t}(x) = t^{-n/2}e^{-in\pi/4}\exp\left[-\sqrt{(x^{2}-t^{2})}\right] + R_{t}(x)$$

where $||R^t||_{\infty} = O(t^{-1-n/2})$ as $t \to \infty$. By $\sqrt{(x^2-t^2)}$ we mean the value that lies on the positive imaginary axis when |x| < t and on the positive real axis when |x| > t. Since $||R_t||_{\infty} = O(t^{-1-n/2})$ it is clear that $t^{n/2}||R_t * f||_{\infty} = O(t^{-1})$ and hence

$$\lim_{t\to\infty} t^{n/2} e^{in\pi/4} \exp[it\sqrt{(1+\lambda^2)}] R_t * f\left(\frac{\lambda t}{\sqrt{(1+\lambda^2)}}\right) = 0.$$

Thus to complete the proof of the lemma we must show

$$\lim_{t \to \infty} (2\pi)^{-n/2} \int \exp\left(\frac{it}{\sqrt{(1+\lambda^2)}} - \sqrt{\left(\left|\frac{\lambda t}{\sqrt{(1+\lambda^2)}} - x\right|^2 - t^2\right)}\right) f(x) \ d^n x$$

$$= (2\pi)^{-n/2} \int e^{-i\lambda \cdot x} f(x) d^n x \equiv \hat{f}(\lambda).$$

But this is a consequence of Lebesgue's dominated convergence theorem because

$$\lim_{t\to\infty}\frac{it}{\sqrt{(1+\lambda^2)}}-\sqrt{\left(\left|\frac{\lambda t}{\sqrt{(1+\lambda^2)}}-x\right|^2-t^2\right)}=-i\lambda\cdot x.$$

For $\phi \in L^2(\mathbb{R}^n)$ define

(3)
$$U_t\phi(x) = (2\pi)^{-n/2} \int e^{ix\cdot y} \exp[-it\sqrt{(1+y^2)}]\phi(y)d^ny.$$

COROLLARY 2. If there exists $f \in L_1(\mathbb{R}^n)$ such that $\hat{f}(\lambda) = (1 + \lambda^2)^{(n+2)/4} \cdot \phi(y)$ then

(i)
$$||U_t\phi||_{\infty} \le (2\pi)^{-n/2} ||f||_1 ||W_t||_{\infty} \sim (2\pi)^{-n/2} ||f||_1 t^{-n/2}$$
 as $t \to \infty$,

(ii)
$$\lim_{t\to\infty} t^{n/2} e^{i\alpha(\lambda,t)} U_t \phi\left(\frac{\lambda t}{\sqrt{(1+\lambda^2)}}\right) = \hat{f}(\lambda) = (1+\lambda^2)^{(n+2)/4} \phi(\lambda),$$

where $\alpha(\lambda, t) \equiv n\pi/4 + t/\sqrt{(1+\lambda^2)}$.

PROOF. Both (i) and (ii) follow easily from the fact that

$$U_{t}\phi(x) = (2\pi)^{-n/2} \int e^{ix \cdot \lambda} \exp\left[-it\sqrt{(1+\lambda^{2})}\right] (1+\lambda^{2})^{-(n+2)/4} \hat{f}(\lambda) d^{n}\lambda$$
$$= (2\pi)^{-n/2} \int W_{t}(x-y) f(y) d^{n}y \equiv W_{t} * f(x).$$

REMARK. The proof of Corollary 2 follows the approach used by Brodsky [2] and Segal [7, pp. 95–98] to obtain bounds like that given by (i). Recently, I became aware of a different approach by Littman [4] which when applied to the present situation yields (i) and (ii) with different assumptions on ϕ . Using Littman's approach Theorem 1 can be extended to more general situations (see [6]).

Motivated by (ii) of Corollary 2 we define an approximation $A_{i}\phi(x)$ to $U_{i}\phi(x)$ by requiring

(4)
$$t^{n/2}e^{i\alpha(\lambda,t)}A_t\phi\left(\frac{\lambda t}{\sqrt{(1+\lambda^2)}}\right) = (1+\lambda^2)^{(n+2)/4}\phi(\lambda), \quad \lambda \in \mathbb{R}^n, \ t>0.$$

To see how this works out consider the transformation

$$T_t: \lambda \to x = \frac{\lambda t}{\sqrt{(1+\lambda^2)}}$$

that maps R^n onto the ball |x| < t. Since $x^2 = \lambda^2 t^2 / (1 + \lambda^2)$ we have $\lambda^2(t^2 - x^2) = x^2$ and hence $T_t^{-1}: x \to \lambda = x / \sqrt{(t^2 - x^2)}$. Taking $\lambda = T_t^{-1}(x)$ in (4) and multiplying by $t^{-n/2}e^{-i\alpha}$ gives

(5)
$$A_{t}\phi(x) = \exp\left[-i\alpha(T_{t}^{-1}(x), t)\right]t^{-n/2}\left\{1 + \frac{x^{2}}{t^{2} - x^{2}}\right\}^{(n+2)/4}\phi(T_{t}^{-1}(x))$$

$$= e^{-i\theta(x, t)}\rho(x, t)\phi\left(\frac{x}{\sqrt{(t^{2} - x^{2})}}\right), \qquad |x| < t,$$

where θ and ρ are the functions defined in Theorem 1.

THEOREM 1'. For $\phi \in L^2(\mathbb{R}^n)$ define $U_i \phi$ and $A_i \phi$ by (3) and (5). Then

- (i) $||A_t \phi||_{2,t} = ||\phi||_2 = ||U_t \phi||_2$,
- (ii) $\lim_{t\to\infty} ||U_t\phi A_t\phi||_{2,t} = 0$,
- (iii) $\lim_{t\to\infty}\int_{|x|>t} |U_t\phi(x)|^2 dx = 0$,

where

$$||f||_{2,i} \equiv \left\{ \int_{|x| \le 1} |f(x)|^2 d^n x \right\}^{1/2}.$$

PROOF. It is not difficult to check that the Jacobian of T_{i} is

$$\frac{\partial(x_1, \cdots, x_n)}{\partial(\lambda_1, \cdots, \lambda_n)} = t^n (1 + \lambda^2)^{-(n+2)/2} = \rho^{-2}(T_t(\lambda), t).$$

Thus by the change of variable theorem for multiple integrals

(6)
$$||f||_{2,t}^2 = \int |f(T_t(\lambda))|^2 \rho^{-2}(T_t(\lambda), t) d^n \lambda.$$

Taking $f = A \phi$ in (6) we obtain the left-hand side of (i). The other half of (i) is Parseval's equality.

To prove (ii) let $\epsilon > 0$ and choose $\phi \in C_c^{\infty}(\mathbb{R}^n)$ such that $\|\phi - \phi\|_2 < \epsilon/3$. Applying (i) to $\phi - \phi$ we have

$$||U_t \phi - U_t \tilde{\phi}||_{2,t} \le ||U_t \phi - U_t \tilde{\phi}||_2 = ||A_t \phi - A_t \tilde{\phi}||_{2,t} = ||\phi - \tilde{\phi}||_2$$

Thus

$$||U_{t}\phi - A_{t}\phi||_{2,t} \leq ||U_{t}\phi - U_{t}\phi||_{2,t} + ||U_{t}\phi - A_{t}\phi||_{2,t} + ||A_{t}\phi - A_{t}\phi||_{2,t} < \epsilon/3 + ||U_{t}\phi - A_{t}\phi||_{2,t} + \epsilon/3,$$

so to prove (ii) we need only show there exists τ such that $t > \tau$ implies $||U_t \tilde{\phi} - A_t \tilde{\phi}||_{2, t} < \epsilon/3$. Since this amounts to proving (ii) with ϕ replaced by $\tilde{\phi}$, we simply assume $\phi \in C_c^{\infty}(\mathbb{R}^n)$.

Applying (6) we have

$$||U_{t}\phi - A_{t}\phi||_{2,t}^{2} = \int \left| U_{t}\phi\left(\frac{\lambda t}{\sqrt{(1+\lambda^{2})}}\right) - A_{t}\phi\left(\frac{\lambda t}{\sqrt{(1+\lambda^{2})}}\right) \right|^{2}$$

$$(7) \qquad \qquad \cdot \rho^{-2}(T_{t}(\lambda), t)d^{n}\lambda$$

$$= \int \left| e^{-i\alpha(\lambda, t)}[g_{t}(\lambda) - \phi(\lambda)] \right|^{2}d^{n}\lambda$$

where

$$g_t(\lambda) = e^{i\alpha(\lambda,t)} t^{n/2} (1+\lambda^2)^{(n+2)/4} U_t \phi\left(\frac{\lambda t}{\sqrt{(1+\lambda^2)}}\right).$$

Clearly $||U_t\phi||_{2,t}^2 = \int |g_t(\lambda)|^2 d^n\lambda$ and hence

(8)
$$||g_{\ell}||_2 \leq ||U_{\ell}\phi||_2 = ||\phi||_2.$$

Since $\phi \in C_c^{\infty}(\mathbb{R}^n)$ part (ii) of Corollary 2 can be used to conclude that for every $\lambda \in \mathbb{R}^n$

(9)
$$\lim_{t\to\infty} g_t(\lambda) = \phi(\lambda).$$

An application of Fatou's lemma and Egoroff's theorem shows that (8) and (9) imply $\lim_{t\to\infty} ||g_t-\phi||_2 = 0$ which in view of (7) establishes (ii).

To prove (iii) we must show $\lim_{t\to 0} ||U_t\phi||_2^2 - ||U_t\phi||_2^2$, t=0 which is obvious from (i) and (ii).

Proof of Theorem 1. Since

$$u(x, t) = \overline{U_{\iota}\overline{\psi}(-x)} + U_{\iota}\phi(x), \qquad a(x, t) = \overline{A_{\iota}\overline{\psi}(-x)} + A_{\iota}\phi(x),$$

Theorem 1 follows immediately from Theorem 1'.

Let Γ be a cone inside the cone $\{(x, t): |x| < t\}$. That is, assume $(x, t) \in \Gamma$ implies |x| < t and $(sx, st) \in \Gamma$ for all s > 0. Put

$$B = \left\{ \frac{x}{\sqrt{(1-x^2)}} : (x,1) \in \Gamma \right\}$$

and let $\beta(\lambda)$ be the characteristic function of B. Then the characteristic function $\gamma(x, t)$ of Γ is zero for |x| > t and satisfies

$$\gamma(x,t) = \beta \circ T_t^{-1}(x) = \beta \left(\frac{x}{\sqrt{(t^2 - x^2)}}\right) \quad \text{for } |x| < t.$$

COROLLARY 1'. Let $\gamma(x, t)$, B be as above and let u(x, t), $\phi(y)$, $\psi(y)$ be as in Theorem 1. Then

$$\lim_{t\to\infty} \left\|\gamma u(\cdot,t)\right\|_{2}^{2} = \int_{R} \left|\psi(-\lambda)\right|^{2} + \left|\phi(\lambda)\right|^{2} d^{n}\lambda.$$

REMARK. Similar expressions can be obtained for the kinetic and potential energies $\|\gamma u_t\|_{2}^2$, $\|\gamma u\|_{2}^2 + \sum \|\gamma u_{x_t}\|_{2}^2$ since u_t and u_{x_t} can also be written in the form of equation (1). This gives an extension of the Virial theorem stated in Brodsky [1].

PROOF. By Theorem 1 it suffices to prove the corollary with u(x, t) replaced by a(x, t). When |x| < t we have

$$\gamma(x,t)a(x,t) = \beta\left(\frac{x}{\sqrt{(t^2-x^2)}}\right) \left\{e^{i\theta(x,t)}\psi\left(\frac{-x}{\sqrt{(t^2-x^2)}}\right) + e^{-i\theta(x,t)}\phi\left(\frac{x}{\sqrt{(t^2-x^2)}}\right)\right\}\rho(x,t),$$

and hence, by (6),

$$\|\gamma a(\cdot,t)\|_{2,t}^2 = \int \beta(\lambda) \left| e^{i\alpha(\lambda,t)} \psi(-\lambda) + e^{-i\alpha(\lambda,t)} \phi(\lambda) \right|^2 d^n \lambda.$$

Since $|e^{i\alpha}\psi + e^{-i\alpha}\phi|^2 = |\psi|^2 + |\phi|^2 + e^{2i\alpha}\psi\phi + e^{-2i\alpha}\psi\phi$ the corollary follows from

LEMMA 2. For $f \in L^1(\mathbb{R}^n)$ define $I_f(t) = \int \exp[it/\sqrt{(1+\lambda^2)}] f(\lambda) d^n \lambda$. Then $\lim_{|t| \to \infty} I_f(t) = 0$.

PROOF. Since $C_o(R^n)$ is dense in $L^1(R^n)$ and since $|I_f(t) - I_o(t)| \le ||f - g||_1$ it suffices to prove the lemma when f is continuous and has compact support. Switching to spherical coordinates gives

$$I_f(t) = \int_0^\infty \exp[it/\sqrt{(1+r^2)}]F(r)dr, \qquad F(r) = r^{n-1}\int_{|y|=1}f(ry)dS(y).$$

Applying the change of variable $u = 1/\sqrt{1+r^2}$ yields

$$I_f(t) = \int_0^1 e^{itu} \phi(u) du, \qquad \phi(u) = F\left(\frac{\sqrt{(1-u^2)}}{u}\right) \frac{1}{u^2\sqrt{(1-u^2)}}$$

Since $\sqrt{(1-u^2)} \phi(u) \in C_c((0, 1])$, the lemma follows from the Riemann-Lebesgue theorem.

REMARK ON L^p BEHAVIOR. By Hölder's inequality

$$\begin{aligned} \|\gamma u(\cdot, t)\|_{2}^{2} &\leq \|\gamma(\cdot, t)\|_{q} \|\gamma u^{2}(\cdot, t)\|_{q'} \\ &= \|\gamma(\cdot, t)\|_{1}^{1/q} \|\gamma u(\cdot, t)\|_{2q'}^{2} \\ &= (\|\gamma(\cdot, 1)\|_{1}^{t})^{(1-2/p)} \|\gamma u(\cdot, t)\|_{p}^{2} \end{aligned}$$

where 1-1/q=1/q'=2/p. Thus Corollary 1' gives a lower bound for $\lim_{t\to\infty} \inf_{t\to\infty} t^{n/2}t^{-n/p} \|\gamma u(\cdot,t)\|_p$, $p\geq 2$, which is positive unless $\phi(\lambda)$ and $\psi(-\lambda)$ vanish for $\lambda\in B$.

On the other hand, by using Corollary 2(i) and the estimate $||f||_p^p \le ||f||_2^{p-2}, 1 \le p < \infty$ one can show

$$||u(\cdot,t)||_p = O(t^{-n/2}t^{n/p}), \qquad ||u(\cdot,t)-a(\cdot,t)||_p = o(t^{-n/2}t^{n/p})$$

as $t \to \infty$, provided ϕ and ψ satisfy the condition of Corollary 2.

REFERENCES

- 1. A. R. Brodsky, On the asymptotic behavior of solutions of the wave equations, Proc. Amer. Math. Soc. 18 (1967), 207-208. MR 35 #3289.
- 2. —, Asymptotic decay of solutions to the relativistic wave equation, Thesis, M.I.T., Cambridge, Mass., 1964.
- 3. W. Littman, Maximal rates of decay of solutions of partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 1273-1275.
- 4. ——, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. MR 27 #5086.
- 5. S. Nelson, On some solutions to the Klein-Gordon equation related to an integral of Sonine, Trans. Amer. Math. Soc. (to appear).
- 6. ——, L² asymptotes for Fourier transforms of surface-carried measures, Proc. Amer. Math. Soc. (to appear).
- 7. I. E. Segal, Quantization and dispersion for non-linear relativistic equations, Proc. Conference Mathematical Theory of Elementary Particles (Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, pp. 79-108. MR 36 #542.

IOWA STATE UNIVERSITY, AMES, IOWA 50010