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PARALLELIZABILITY REVISITED1

OTOMAR HÁJEK

Abstract. A classical theorem (Antosiewicz and Dugundji)

states that a dynamical system on a locally compact separable

metric space is parallelizable if and only if it is dispersive. In this

paper it is shown that separability may be omitted, and, under a

further condition, local compactness weakened to local Lindelöf-

ness. The crucial step consists in a purely topological characteriza-

tion of complete instability.

1. Introduction. The well-known Antosiewicz-Dugundji theorem

on parallelizability ([4, Theorem 3]; also see [8, first theorem in

2.4]) reads thus: a dynamical system on a locally compact separable

metric space is parallelizable if and only if it is dispersive. The aim

of the present paper is to obtain a more general theorem of the same

type; one of its corollaries shows that separability may be omitted

entirely. It is also shown how local compactness may be replaced by

local Lindelofness, thereby obtaining one of the few theorems in

dynamical system theory which apply, e.g., to separable normed

linear spaces.

Our principal results are corollaries to Theorem 7. §1 is intro-

ductory, §3 has the function of an appendix. The question of paral-

lelizability is first reduced to the purely topological problem of

finding cross-sections for fiber bundles (Theorem 6 and Lemma 5).

An application of known results then yields Theorem 7. (The method

just described is not novel: one may recognize the proof of Theorem

3 in [4] as a special case of the construction of cross-sections for fiber

bundles [ll, 12.2]; an improvement of the latter has led to a general-

ization of the former.)

Our terminology and notation follows [l, Chapter I]; part will be

recapitulated for the convenience of readers. If 7r is a dynamical

system on a topological space X, then the value of 7r at (x, t) EXXR1

is written as xttí (thus the axioms are that tt'.XXR1—>X is con-
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tinuous, xwO=x, ixwt)TTS=XTrit-\-s)); similarly for MirT where

MEX, TER1- A subset M EX is called invariant iff MtR1 = M.
Given a point xEX, we define Cx=x-kR1 (the trajectory or orbit,

through x), KX = CX (orbit-closure); next we define Lx, Dx, Jx (limit

set, prolongation, prolongational limit set) as follows: yELx iff

XTrli—»y for some | f,-| —>» ; yEDx iff Xíttíí—>y for some x¿—»x, tiER1;

yEJxiff Xiirti-^>y for some x,—>x, |í¿| —>».

Obviously

C. C Kx C A.

(1) U       \J

^x  \_  J x

and, if X is Hausdorff, Kx = CXVJLX, Dx = dSJJx.
A point xEAT is called Poisson unstable, divergent, wandering,

dispersive iff, respectively,

x È Lx,    Lx = 0,        ï$ Jx,    Jx = 0.

Iff this holds for all points xEX, then the entire system is termed

Poisson unstable, divergent, completely unstable ( = almost disper-

sive in [lO]), dispersive, respectively. Obvious relations between

these concepts follow from (1).

A dynamical system ir on X is called parallelizable iff there is a

homeomorphism between X and a space of the form YXR1, such

that, whenever x maps into iy, s), also xwt maps into (y, s-\-l) for all

t. Or equivalently [4], there exists a global section 5 for ir: a subset

SEX such that, for every xEX, there is xtt6ES for a unique 6ER1,

and the mapping x1—>6 is continuous (then we may take  Y = S).

Let w he a dynamical system on X. The relation C of being on the

same trajectory (i.e., xCy iff xECy) is an equivalence relation on X;

the equivalence classes are precisely the trajectories. The set of

equivalence classes modulo C will standardly be endowed with the

quotient topology, denoted by X/C, and called the orbit space (of ir).

The canonical quotient map X—>X/C will consistently be denoted

by e:X^>X/C; thus

e(x) = CXE X/C   for *£!

1. Lemma. e:X—>X/C is a continuous open surjection.

Proof. The quotient map e is a continuous surjection. For any

open GEX, the set

e-'ieiG)) = GttR1 = UfoY/: t E A1}
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is the union of sets Girt each of which is open; indeed, it is the image

of G under the homeomorphism X ~X defined by x^*xirt.

Example. We reproduce here an example, due to Bebutov (see

[8, 2.4]), which provides considerable insight into some of the finer

points involved. Begin with the parallel system on R2, with trajec-

tories horizontal (e.g. x = l, y = 0). Choose a sequence of points

Zn = (x„, yn)ER2 with x„—♦+», 0<y„—>0 monotonically. Introduce

critical points at all z„ (e.g. by modifying the system suitably, but

only in e„-neighborhoods of the z„) ; finally omit the negative half-

rays (—°o, x„]x{y«}. There results a dynamical system 1 on a

space X, with the following properties. X is metrizable and a count-

able union of compact sets; X/C is Hausdorff and a countable union

of compact sets (hence Lindelöf) ; 7r is dispersive, but not paralleliz-

able. The Antosiewicz-Dugundji theorem traces this to absence of

local compactness of X. However, it is Lindelöf paracompact.

Theorem 7 then shows that X/C is not regular, and hence not para-

compact; indeed, it is obvious that 7r does not have the regularity

property described below, and this is a necessary condition for

parallelizability. It may also be noted that X/C is a connected second-

axiom space, which, at all points save one, is locally a 1-manifold

(hence locally compact).

In [8, 2.5, 4] Nemyckiï conjectured that a dispersive system in a

separable complete metric space is parallelizable. Actually the ex-

ample disproves this: the phase space X is completely metrizable,

since it is a G¡ set in R2. Corollary 10 will show that, if the regularity

property is imposed, then completeness is irrelevant.

2. Completely unstable systems and bundle spaces.

Definition. A dynamical system has the regularity property iff

every invariant neighborhood of any point contains a closed invariant

neighborhood of the point.

We list for future reference two easily proved results.

2. Lemma. Let it be a system on a regular phase space X. Then

1. 7T has the regularity property iff the orbit space X/C is regular.

2. If ir is parallelizable, then it has the regularity property.

We list some further instances of systems with regularity (also

see the next lemma). If the phase space X is locally compact and if

the orbit space X/C is Hausdorff (equivalently, CX=DX for all xEX;

see also [7, Theorem 2]), then 7r has the regularity property; to see

this merely use Lemma 1. A system uniformly stable relative to a

uniformity for X has the regularity property, since X/C is then

completely regular.
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3. Lemma. Let X be Hausdorff. If ir is completely unstable with the

regularity property, then it is dispersive, and X/C is Hausdorff. If X

is locally compact, then, conversely, dispersiveness implies the regularity

property; in non-locally-compact X, it need not.

Proof. First, let the system be completely unstable. Then it is

divergent, i.e., Ly = 0 for all y EX (indeed, quite generally, xEJx

for all xELy). If the system is not dispersive, and yEJx, then yECx

from complete instability; thus Cy = Cy\JLy = Cy is disjoint from Cx.

In other words, U = X — CU is an open invariant neighborhood of Cx.

With the regularity property we would have a closed invariant

neighborhood FC U; but then JXEDXQ Fcontradicts Jx3yE U.

Conversely, consider a dispersive system in a locally compact

space; we wish to verify the regularity property of ir. Take any in-

variant neighborhood U of any given point x; there is a smaller

compact neighborhood V, necessarily with VirRlEUirRlEU- Our

result now follows from the observation that, in dispersive systems,

VwR1 is closed whenever V is compact (actually this is necessary

and sufficient for dispersiveness).

Finally, return to the example described earlier; the system is

dispersive and obviously not regular.

4. Lemma. In a Tichonov phase space, a point x is wandering ii.e.,

xEJx) if and only if there exists a local section S containing x such that

SirR1 is open and on it the system is parallelizable ior dispersive).

Proof. That for wandering points x such a local section exists is

Lemma 3 in [4] (also see [12, Theorem 3]), in case the phase space is

locally compact and metrizable. For our situation use the generaliza-

tion of the Whitney-Bebutov theorem (existence of local sections)

applying to Tichonov spaces [5, VI, 2.12]. Then on SirR1 our system

reduces to the parallel system over SXR1.

For the converse assertion, let U be an invariant neighborhood of

x on which the system is dispersive; we may take U open. Now rela-

tivize the original system to U; then the prolongational limit set of

the relativized system has

0 = Juix) = 7(x) r\ U,

so that xEUcannot belong to /(x).

5. Lemma. Let w be a system on a space X. Every global section for t

is a cross-section to the quotient map e:X—>X/C; if tt is completely un-

stable and X Hausdorff, the two concepts coincide.
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Proof. Recall that a cross-section to a quotient map f:X—*Y is

the range of a continuous map s\ Y—*X such that/o s is the identity

map of Y.

If 5 is a global section for ir, then 5 is evidently homeomorphic to

X/C, whereupon s: X/C^>X may be taken as the inverse map.

For the converse assertion, let tt be completely unstable, X Haus-

dorff, s:X/C—>X continuous, e o s = identity, 5 = range 5. Thus 5

is closed; furthermore, each trajectory Cx — er1(e(x)) intersects 5 at

one point precisely (namely, at soe(x)). Since 7r is completely un-

stable and hence nonperiodic, there exists a mapping 6:X—>Rl such

that 8(x) is the unique element in P1 with X7r0(x)£5. It remains to

show that 6 is continuous, i.e., that

Xiirti E S 3 xirt, Xi —> x

imply t—H. We have

s o e(xi) = Xiirti —* xirt = jo e(x)

from continuity. Let t' be any accumulation point of the i,. Then t'

= oo is excluded by complete instability and x —>x, xnvti—*X7r/£d;

and for finite t', closedness of 5 yields t' —t. Thus indeed t—H.

6. Theorem. For a system tt on a Tichonov space X, the following

conditions are mutually equivalent:

1. ir is completely unstable.

2. e:X—*X/Cis the projection of a fiber bundle with fiber R1.

Part of the proof parallels that of Theorem 3 in [7]. However, there

are so many points of difference (differentiability and special phase

spaces in [7]) that it seemed advisable to give our proof at length.

Proof. Evidently 2=*1; apply Lemmas 4 and 5, noting that e is

trivial over slicing neighborhoods, and so has cross-sections there.

For 1=>2 we wish to show that, for each xEX/C there is a neigh-

borhood U and a homeomorphism hu' UXR1-^e~l(U) such that the

composition e o hu is the projection of UXR1 on the first factor. Let

e(x') =x; since tt is completely unstable, x' is wandering, so there is a

local section 5 containing x' with U' = SXRl open in X and paral-

lelizable. Then U = e(U') is open since e is open, and x£P. Letting

/: U—»5 be the inverse of e| 5, the map (y, t)>—*f(y)irt is a homeomor-

phism   hu'UXRi-^>U' = e~1(U)  satisfying  the  required  condition.

Our main results are corollaries of the following basic theorem.

7. Theorem. Let w be a dynamical system on a Tichonov space X,

and assume that
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(*) X/C    is paracompact.

Then w is parallelizable if and only if it is completely unstable.

Proof. Since parallelizable systems are completely unstable, we

need only prove one implication. Let ir be completely unstable.

According to Theorem 6, e\X—>X/C is the projection of a fiber bundle

with A1 as fiber. From the assumptions, both X and X/C are regular,

so that iv has the regularity property (Lemma 2). If follows easily

that X/C is a T\ space, and hence a Hausdorff space. Thus we have a

fiber bundle with base space paracompact Hausdorff, and fiber A1, an

absolute retract for normal spaces. According to [ll] (p. 218, re-

ferring to [6]), there exists a cross-section to e; from Lemma 5, this

is then a global section for ir, and so ir is parallelizable.

We will show later (Corollary 14) that (*) is satisfied if X is para-

compact and locally Lindelöf, and ir has the regularity property.

Thus we have

8. Corollary. If w is a dynamical system on a Hausdorff para-

compact locally Lindelöf space, then ir is parallelizable if and only if it is

completely unstable and has the regularity property.

9. Corollary. // ir is a dynamical system on a Hausdorff para-

compact locally compact space, then ir is parallelizable if and only if it is

dispersive.

Proof. Lemma 3 reduces this to Corollary 8; local compactness

implies local Lindelöfness.

10. Corollary. If it is a system on a meirizable locally separable

space, then ir is parallelizable if and only if it is completely unstable and

has the regularity property.

11. Corollary. On a space X with metric p, let irbea system which is

Liapunov stable in the sense that, for every e>0, there exists 5>0 with

pixirt, yirt) < t    whenever p(x, y) < S.

Then ir is parallelizable if and only if it is Poisson unstable.

Proof. For Liapunov stable systems we have LX = JX, so that

Poisson instability is equivalent to complete instability. The asser-

tion now follows from Theorem 7, since X/C is metrizable. Indeed,

there exists an equivalent metric d on X such that

dixirt, yirt) = dix, y)    for all x, y in X, t E Rl,

see [l, IV, 2.8]. It is then easily seen that
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ini{dixTtt,y):tE R1] = mi{d{xirt, yirs):t, s E R1],

which obviously defines a metric on X/C.

3. Some topological results. The following assertion is classical

(for Hausdorff spaces, [2, I, §9.10], [3, XI, 7.3]).

12. Proposition. A regular locally compact space is paracompact if

and only if it is the direct sum of regular locally compact a-compact

spaces.

13. Proposition. A regular locally Lindelöf space is paracompact if

and only if it is the direct sum of regular Lindelöf spaces.

This proof is modelled on that of the preceding assertion, making

use of the following two properties: every Lindelöf subset meets at

most countably many members of any locally finite collection; the

countable union of Lindelöf subsets is Lindelöf. It may be noted that

here paracompactness can be replaced by the following property

("cr-paracompactness") : every open cover can be refined by a locally

countable cover. Thus for regular locally Lindelöf spaces, <r-para-

compactness implies paracompactness.

14. Corollary. Let p'.X-^Y be the projection of a bundle space, and

assume that X is paracompact and locally Lindelöf, Y is regular, the

fiber F is connected. Then Y is paracompact.

Proof. According to Proposition 13, X is the direct sum of regular

Lindelöf spaces. Since the fibers are connected and p:X—>Y is an

open map, Y also decomposes into a direct sum of spaces Yit where-

upon the restrictions p\Xi:Xi—>F¿ of p are continuous open sur-

jections. Thus each F< is Lindelöf (and regular), so that their direct

sum Y is paracompact according to Proposition 13.

In §2 it is apparent how much depends on paracompactness of

X/C (note also that this is necessary for existence of cross-sections

if X is paracompact); in Corollaries 8 to 10, the added requirements

needed to ensure this were rather coarse. Much stronger results

could be obtained if the following were settled :

Conjecture. Let p:X-*Y be the projection of a fiber bundle

with R1 as fiber (or merely a Lindelöf fiber), and assume that Y is

regular. If X is paracompact then so is Y.
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