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A PRIMARY DECOMPOSITION FOR TORSION MODULES
J. S. ALIN

ABSTRACT. A definition of primary module is given and a
theorem is proved characterizing rings for which each torsion
module, in the sense of S. E. Dickson, decomposes as a direct sum
of its primary submodules. This theorem is applied to obtain a
generalization of Fuchs’ theorem on the additive group structure
of Artinian rings.

1. Introduction. S. E. Dickson [2], [3] has investigated a primary
decomposition for torsion modules over an arbitrary ring and Alin
[1] has characterized rings for which this primary decomposition
holds. The purpose of this note is to define “primary module” in such
a way that the primary decomposition holds for a larger class of rings,
in particular, for all Noetherian rings.

All rings R have a unit and modules are unitary left R-modules. If
M is an R-module, M+ denotes the underlying additive group of M.
It is well known that if S is a simple R-module, then S+ is a direct
sum of copies of Z,, the cyclic group of order p, or a direct sum of
copies of Q, the additive group of rational numbers. In the first case
we say that Sis of type p and in the second, .S is of type Q.

Let 1, P2, + - + be an indexing of the positive primes and for each
i=1, 2, - - - let 8; be a representative set of simple R-modules of
type pi. Let 8 be a representative set of simple R-modules of type Q.
Fori=0,1, - - - let 3; be the torsion class generated by 8; and let J be
the torsion class generated by U2, 8; [4]. Thus 3; (respectively 3) is
the class of all modules M such that each nonzero homomorphic
image of M has a submodule isomorphic to a member of 8; (respec-
tively, U;2, 8.). The classes 3, 3o, 31, - - - are closed under submodules,
direct sums, extensions and homomorphic images. It follows that each
module M has a unique largest submodule M;in 3;. If ME3;,1=21, M
is pi-primary and if M E3y, M is Q-primary. The modules ME3J are
called torsion. The primary decomposition holds for a ring R if and
only if for each ME3, M=) >, M; (direct), i.e., each torsion module
is a direct sum of its primary submodules.

For an R-module M, Soc(M) denotes the socle of M. We let T!(M)
=Soc(M) and extend to an ascending chain of submodules { 7*(M)}
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of M in the usual manner [1]. If ME3, T*(M) = M for some ordinal &
and the least such ordinal is the T-length of M.

For any module M, M, denotes the usual torsion subgroup of the
group M+ and M,, for a prime p, denotes the maximum p-primary
subgroup of M+. Note that M, and M, are submodules of M.

We use Ext(4, B) for Exty(4, B) and Hom(4, B) for Homz(4, B).
The reader is referred to MacLane [6] for the properties of Ext which
are used in what follows.

2. The main theorem. The following lemma, in part characterizing
the primary submodules of a module M, will be needed in the proof of
the main theorem.

LEMMA 2.1. Let ME3. Then
(1) M;=M,, fori=1.
(2) (Mo)* s atorsion-free divisible group.

Proor. (1) Clearly Soc(M;)C M,, and by induction it is easy to see
that M;C M,,. But M; and M,, are submodules of M so M,,/M; is
either zero or it has a simple submodule, since M &3. The latter
choice leads to a contradiction, hence M;= M,,.

(2) It is clear that Soc(M,) is divisible and torsion-free. Assume
inductively that T=(M,) is divisible and torsion-free. Then since

T ( M)/ T*(M,o) = Soc(Mo/T*(My))
is a direct sum of Q-type simples and since
0— T(Mo) — T (M) — T (Mo)/T*(Mo) — 0

is exact, we get that T>+1(M) is torsion-free divisible, since the class
of torsion-free divisible groups is closed under extensions. Since
ME?3, T8(M,) = M, for some 8 and so M, is torsion-free divisible. This
completes the proof.

REMARKS. (1) From the previous lemma and the primary decom-
position for torsion abelian groups, the primary decomposition holds
for any ring which has no Q-type simple modules. In fact, over any
ring, if ME3J and M,=0, we get M = Z{’_l M,

(2) For any module M, Y ..; M; cannot contain a simple from
the class 8; and consequently D .-, M; is always a direct sum.

LEMMA 2.2. The primary decomposition holds for the ring R if and
only if Ext(S, T) =0 for each Q-type simple S and each module TE3
with To=0.

Proor. The necessity of the condition is clear since if
0—»T—X—S—0 is exact and the primary decomposition holds, we
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must have X =X,® > ;2; X: with X,~S and this implies that the
sequence splits.

To prove that the condition is sufficient, let M & 3. We will prove
that M= > 2, M, by showing that M/ Y i, M; has no simple sub-
module. By Lemma 2.1, >, M;=M, s0 2 s Mi=M,+M,. Also
by 2.1, M, is divisible and so as groups we have

Thus any subgroup of M/My+ M, is isomorphic to a subgroup of
K/M, Hence M/Mo+ M, contains no p-type simple since K/M; is
torsion-free as a group.

Assume M/My+M, has a Q-type simple, say S=X/M,+ M,,
XCM. Now Mo+ M,/ My~ M, so we have an exact sequence

M,+ M, X X
- Tt

=~ M,—

0 —_—
M, M, M+ M,

=5—-0.

By hypothesis, this sequence must split, so X /M, contains a Q-type
simple. Thus M /M, contains a Q-type simple and this is a contradic-
tion. Hence M/ D 2, M; has no simple submodule, so M= > >, M;
and the proof is complete.

THEOREM 2.3. The primary decomposition holds for the ring R if and
only if

(1) (ITsce S/ X sce S)o=0, where @ is a representative set of
simples of type p.

(2) If 05P—K—U—0 is an exact sequence of R-modules with K
cyclic, PEJ; for some 1= 1 and U a Q-type simple, then P has nonlimit
ordinal T-length.

Proor. To see that the first condition is necessary, suppose U is
a Q-type simple contained in the factor module [] S/ Y S. Then we
have an exact sequence 0— Y S—X—U—0, where XC ][] S. Since
the primary decomposition holds, X~ U® Y. S. But then UCX
CIISso

0 # Hom(U, U) € Hom(U,[[ S) =] Hom(U,S) =0

and we have a contradiction.

If 0»P—-K—U—0 is exact as in (2) above, then K~P@® U and
so P is cyclic. It follows that P has nonlimit ordinal T-length.

To show that (1) and (2) are sufficient, we use Lemma 2.2 and
show Ext(T, U)=0 for U a Q-type simple and TE€3, T, =0.
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By previous remarks, T= Y ;= T and applying Hom(U, —) to the
exact sequence )

0> T:—[IT:=]I7:/2°T:—0
we get the exact sequence
Hom(U,[17:/2°T:) — Ext(U,>_T:) — Ext(U, [ 7).

But Ext(U, I T:) = [] Ext(U, T) so to show that the condition of
Lemma 2.2 holds it is sufficient to prove:

(@) Hom(U, II T/ 22 T9) =0,

(b) Ext(U, T;)=0 for z=1.

By (1) and an easy modification of Lemma 2.2 of [2], (a) holds.
We prove that (b) holds by showing Ext(U, 4) =0 for any p;-pri-
mary module 4. The proof is by induction on the T-length of 4.

If A is a p-primary module of T-length one, then 4 = > S, where
each S, is a p;-type simple. As before

Hom(U,[[S./2_Sa) — Ext(U,2>_Sa) — Ext(U,][Sa)

is exact with right end zero since Ext(U, S,) =0 because U and S, are
simples of different type. Since p;U= U, but p;([] S./>_ S.) =0, we
must have Hom(U, [ S./>_ S.) =0. Hence Ext(U, 4)=0 if 4 has
T-length one.

Now assume Ext(U, 4)=0 for all p;-primary modules 4 of T-
length @« <B and let B have T-length . If

* 0-B—-X—->U—0
is exact with B—X the inclusion map, choose x€X —B. Then
0—-BNRxt—Rx—U—>0

is exact, the T-length of BMRx is less than or equal to § and it is not
a limit ordinal by (2). Let the T-length of BNRx be a+1. Then
BN Rx Rz
- — —
T*(BMN Rx) T2(BMN Rx)

U—0

is exact and since BN Rx/T%(BMNRx) has T-length one, the sequence
must split. Thus there is a submodule K of Rx containing T*(BMNRx)
with U~K/T*(BNRx). Then

0—->T*(BNRx)>K—>U—0

is exact and since T*(BNRx) has T-length a <, this sequence must
split. Thus K contains a submodule isomorphic to U and so since
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KCRxC X, X has a submodule isomorphic to U. It follows that the
sequence (*) splits and this completes the proof.

3. Applications and examples.

THEOREM 3.1. Let R be a ring with the property that every maximal
left ideal L of R, with R/L a Q-type simple, is finitely generated. Then
the primary decomposition holds for R.

Proor. We apply Theorem 2.3 and show that conditions (1) and
(2) hold.

Let 0—»P—K— U—0 be exact with K cyclic and U a Q-type simple.
Then for some left ideals LE M of R we have P~ M /L and U~R/M.
But then M is finitely generated so M /L, and hence P, cannot have
limit ordinal T-length. Thus (2) holds.

Let U=R(x,+ 2 S)C JI S/ > S where the product and sum are
taken over the set @ as in (1) of 2.3. Let M= (>, S:(x,)). Then
U=~R/M, so M=Rmy+ - - -+ +Rm, is finitely generated, since U is
of type Q. Now for each 7, mx,=0 for all but finitely many SEe.
Hence there is an x,,70 such that Mx,,=0. But then Rx,,=S,
~R/M = U and this is a contradiction since .Sy is of type p. Hence
(1) of 2.3 is satisfied and the proof is complete.

[ ’]I‘he following corollary generalizes part of Fuchs’ Theorem 72.2
5]

COROLLARY 3.2. Let R satisfy the hypothesis of 3.1 and assume non-
zero R-modules have nonzero socles. Then R is the ring direct sum of two
sided ideals Ro, Ry, - - -, R, where R} is a direct sum of copies of Q
and each R}, 1<i=<n, is a bounded primary group.

Proor. Since nonzero modules have nonzero socles, REJ3 and
since by 3.1 the primary decomposition holds, we have R= > ;> R;.
Since R has a unit element, R=R¢® - - - ®R,. Each of the classes
3; is closed under homomorphic images and right multiplication by
elements of R is a left R-homomorphism so each R; is a two-sided
ideal. Ry is a torsion-free divisible group and so it is a direct sum of
copies of Q. Each R;, 1 £¢=n, is a primary group by Lemma 2.1 and
since each R; is a ring with unit, it must be a bounded group. This
proves the corollary.

To construct examples of non-Artinian rings satisfying the hypoth-
eses of Corollary 3.2, let P be an infinite product of copies of Z,.
Define the ring R by R*=P®Z, and (p1, 21) (b2, 12) = (Gep1+51p2, 1102).
Then P is the socle of R and R/P = Z,; so nonzero modules have non-
zero socles. Since R has no Q-type simples, the hypothesis of 4.1 is
clearly satisfied. Since every subgroup of P is an ideal of R, it is clear
that R is neither Artinian or Noetherian.
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