A PRIMARY DECOMPOSITION FOR TORSION MODULES

I. S. ALIN

ABSTRACT. A definition of primary module is given and a theorem is proved characterizing rings for which each torsion module, in the sense of S. E. Dickson, decomposes as a direct sum of its primary submodules. This theorem is applied to obtain a generalization of Fuchs' theorem on the additive group structure of Artinian rings.

1. Introduction. S. E. Dickson [2], [3] has investigated a primary decomposition for torsion modules over an arbitrary ring and Alin [1] has characterized rings for which this primary decomposition holds. The purpose of this note is to define "primary module" in such a way that the primary decomposition holds for a larger class of rings, in particular, for all Noetherian rings.

All rings R have a unit and modules are unitary left R-modules. If M is an R-module, M^+ denotes the underlying additive group of M. It is well known that if S is a simple R-module, then S^+ is a direct sum of copies of Z_p , the cyclic group of order p, or a direct sum of copies of Q, the additive group of rational numbers. In the first case we say that S is of type p and in the second, S is of type Q.

Let p_1, p_2, \cdots be an indexing of the positive primes and for each $i=1, 2, \cdots$ let S_i be a representative set of simple R-modules of type p_i . Let S_0 be a representative set of simple R-modules of type Q. For $i=0, 1, \cdots$ let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion class generated by S_i and let S_i be the torsion such that each nonzero homomorphic image of S_i (respectively, S_i). The classes S_i , S_i , S_i , S_i are closed under submodules, direct sums, extensions and homomorphic images. It follows that each module S_i has a unique largest submodule S_i in S_i . If S_i if S_i if S_i if S_i are called torsion. The primary decomposition holds for a ring S_i if and only if for each S_i , S_i , S_i , S_i , S_i , S_i , i.e., each torsion module is a direct sum of its primary submodules.

For an R-module M, Soc(M) denotes the socle of M. We let $T^1(M) = Soc(M)$ and extend to an ascending chain of submodules $\{T^{\alpha}(M)\}$

Received by the editors November 11, 1969.

AMS 1969 subject classifications. Primary 1640; Secondary 1690.

Key words and phrases. Torsion classes, Primary decomposition.

of M in the usual manner [1]. If $M \in \mathcal{I}$, $T^{\alpha}(M) = M$ for some ordinal α and the least such ordinal is the T-length of M.

For any module M, M_t denotes the usual torsion subgroup of the group M^+ and M_p , for a prime p, denotes the maximum p-primary subgroup of M^+ . Note that M_t and M_p are submodules of M.

We use $\operatorname{Ext}(A, B)$ for $\operatorname{Ext}_R^1(A, B)$ and $\operatorname{Hom}(A, B)$ for $\operatorname{Hom}_R(A, B)$. The reader is referred to MacLane [6] for the properties of Ext which are used in what follows.

2. The main theorem. The following lemma, in part characterizing the primary submodules of a module M, will be needed in the proof of the main theorem.

LEMMA 2.1. Let $M \in \mathfrak{I}$. Then

- (1) $M_i = M_{p_i}$ for $i \ge 1$.
- (2) (M_0) + is a torsion-free divisible group.

PROOF. (1) Clearly $Soc(M_i) \subseteq M_{p_i}$ and by induction it is easy to see that $M_i \subseteq M_{p_i}$. But M_i and M_{p_i} are submodules of M so M_{p_i}/M_i is either zero or it has a simple submodule, since $M \in \mathcal{I}$. The latter choice leads to a contradiction, hence $M_i = M_{p_i}$.

(2) It is clear that $Soc(M_0)$ is divisible and torsion-free. Assume inductively that $T^{\alpha}(M_0)$ is divisible and torsion-free. Then since

$$T^{\alpha+1}(M_0)/T^{\alpha}(M_0) = \operatorname{Soc}(M_0/T^{\alpha}(M_0))$$

is a direct sum of Q-type simples and since

$$0 \to T^\alpha(M_0) \to T^{\alpha+1}(M_0) \to T^{\alpha+1}(M_0)/T^\alpha(M_0) \to 0$$

is exact, we get that $T^{\alpha+1}(M_0)$ is torsion-free divisible, since the class of torsion-free divisible groups is closed under extensions. Since $M \in \mathfrak{I}$, $T^{\beta}(M_0) = M_0$ for some β and so M_0 is torsion-free divisible. This completes the proof.

REMARKS. (1) From the previous lemma and the primary decomposition for torsion abelian groups, the primary decomposition holds for any ring which has no Q-type simple modules. In fact, over any ring, if $M \in \mathfrak{I}$ and $M_0 = 0$, we get $M = \sum_{i=1}^{\infty} M_i$.

(2) For any module M, $\sum_{i\neq j} M_i$ cannot contain a simple from the class S_i and consequently $\sum_{i=0}^{\infty} M_i$ is always a direct sum.

LEMMA 2.2. The primary decomposition holds for the ring R if and only if Ext(S, T) = 0 for each Q-type simple S and each module $T \in S$ with $T_0 = 0$.

PROOF. The necessity of the condition is clear since if $0 \rightarrow T \rightarrow X \rightarrow S \rightarrow 0$ is exact and the primary decomposition holds, we

must have $X = X_0 \oplus \sum_{i=1}^{\infty} X_i$ with $X_0 \approx S$ and this implies that the sequence splits.

To prove that the condition is sufficient, let $M \in \mathbb{Z}$. We will prove that $M = \sum_{i=1}^{\infty} M_i$ by showing that $M / \sum_{i=0}^{\infty} M_i$ has no simple submodule. By Lemma 2.1, $\sum_{i=1}^{\infty} M_i = M_t$, so $\sum_{i=1}^{\infty} M_i = M_0 + M_t$. Also by 2.1, M_0 is divisible and so as groups we have

$$\frac{M}{M_{t}} \approx \frac{M_{0} + M_{t}}{M_{t}} \oplus \frac{K}{M_{t}}.$$

Thus any subgroup of M/M_0+M_t is isomorphic to a subgroup of K/M_t . Hence M/M_0+M_t contains no p-type simple since K/M_t is torsion-free as a group.

Assume M/M_0+M_t has a Q-type simple, say $S=X/M_0+M_t$, $X\subseteq M$. Now $M_0+M_t/M_0\approx M_t$ so we have an exact sequence

$$0 \to \frac{M_0 + M_t}{M_0} \approx M_t \to \frac{X}{M_0} \to \frac{X}{M_0 + M_t} = S \to 0.$$

By hypothesis, this sequence must split, so X/M_0 contains a Q-type simple. Thus M/M_0 contains a Q-type simple and this is a contradiction. Hence $M/\sum_{i=0}^{\infty} M_i$ has no simple submodule, so $M=\sum_{i=0}^{\infty} M_i$ and the proof is complete.

THEOREM 2.3. The primary decomposition holds for the ring R if and only if

- (1) $(\prod_{S \in e} S / \sum_{S \in e} S)_0 = 0$, where e is a representative set of simples of type p.
- (2) If $0 \rightarrow P \rightarrow K \rightarrow U \rightarrow 0$ is an exact sequence of R-modules with K cyclic, $P \in \mathfrak{I}_i$ for some $i \geq 1$ and U a Q-type simple, then P has nonlimit ordinal T-length.

PROOF. To see that the first condition is necessary, suppose U is a Q-type simple contained in the factor module $\prod S/\sum S$. Then we have an exact sequence $0 \to \sum S \to X \to U \to 0$, where $X \subseteq \prod S$. Since the primary decomposition holds, $X \approx U \oplus \sum S$. But then $U \subseteq X \subseteq \prod S$ so

$$0 \neq \operatorname{Hom}(U, U) \subseteq \operatorname{Hom}(U, \prod S) = \prod \operatorname{Hom}(U, S) = 0$$

and we have a contradiction.

If $0 \rightarrow P \rightarrow K \rightarrow U \rightarrow 0$ is exact as in (2) above, then $K \approx P \oplus U$ and so P is cyclic. It follows that P has nonlimit ordinal T-length.

To show that (1) and (2) are sufficient, we use Lemma 2.2 and show Ext(T, U) = 0 for U a Q-type simple and $T \in \mathfrak{I}$, $T_0 = 0$.

By previous remarks, $T = \sum_{i=0}^{\infty} T_i$ and applying Hom(U, -) to the exact sequence

$$0 \to \sum T_i \to \prod T_i \to \prod T_i / \sum T_i \to 0$$

we get the exact sequence

$$\operatorname{Hom}(U, \prod T_i/\sum T_i) \to \operatorname{Ext}(U, \sum T_i) \to \operatorname{Ext}(U, \prod T_i).$$

But $\text{Ext}(U, \prod T_i) = \prod \text{Ext}(U, T_i)$ so to show that the condition of Lemma 2.2 holds it is sufficient to prove:

- (a) Hom $(U, \prod T_i/\sum T_i) = 0$,
- (b) Ext $(U, T_i) = 0$ for $i \ge 1$.

By (1) and an easy modification of Lemma 2.2 of [2], (a) holds. We prove that (b) holds by showing Ext(U, A) = 0 for any p_i -primary module A. The proof is by induction on the T-length of A.

If A is a p_i -primary module of T-length one, then $A = \sum_{\alpha} S_{\alpha}$ where each S_{α} is a p_i -type simple. As before

$$\operatorname{Hom}(U, \prod S_{\alpha}/\sum S_{\alpha}) \to \operatorname{Ext}(U, \sum S_{\alpha}) \to \operatorname{Ext}(U, \prod S_{\alpha})$$

is exact with right end zero since $\operatorname{Ext}(U, S_{\alpha}) = 0$ because U and S_{α} are simples of different type. Since $p_i U = U$, but $p_i (\prod S_{\alpha} / \sum S_{\alpha}) = 0$, we must have $\operatorname{Hom}(U, \prod S_{\alpha} / \sum S_{\alpha}) = 0$. Hence $\operatorname{Ext}(U, A) = 0$ if A has T-length one.

Now assume $\operatorname{Ext}(U, A) = 0$ for all p_i -primary modules A of T-length $\alpha < \beta$ and let B have T-length β . If

(*)
$$0 \to B \to X \to U \to 0$$

is exact with $B \rightarrow X$ the inclusion map, choose $x \in X - B$. Then

$$0 \to B \cap Rx \to Rx \to U \to 0$$

is exact, the T-length of $B \cap Rx$ is less than or equal to β and it is not a limit ordinal by (2). Let the T-length of $B \cap Rx$ be $\alpha+1$. Then

$$0 \to \frac{B \cap Rx}{T^{\alpha}(B \cap Rx)} \to \frac{Rx}{T^{\alpha}(B \cap Rx)} \to U \to 0$$

is exact and since $B \cap Rx/T^{\alpha}(B \cap Rx)$ has T-length one, the sequence must split. Thus there is a submodule K of Rx containing $T^{\alpha}(B \cap Rx)$ with $U \approx K/T^{\alpha}(B \cap Rx)$. Then

$$0 \to T^{\alpha}(B \cap Rx) \to K \to U \to 0$$

is exact and since $T^{\alpha}(B \cap Rx)$ has T-length $\alpha < \beta$, this sequence must split. Thus K contains a submodule isomorphic to U and so since

 $K \subseteq Rx \subseteq X$, X has a submodule isomorphic to U. It follows that the sequence (*) splits and this completes the proof.

3. Applications and examples.

THEOREM 3.1. Let R be a ring with the property that every maximal left ideal L of R, with R/L a Q-type simple, is finitely generated. Then the primary decomposition holds for R.

PROOF. We apply Theorem 2.3 and show that conditions (1) and (2) hold.

Let $0 \rightarrow P \rightarrow K \rightarrow U \rightarrow 0$ be exact with K cyclic and U a Q-type simple. Then for some left ideals $L \subseteq M$ of R we have $P \approx M/L$ and $U \approx R/M$. But then M is finitely generated so M/L, and hence P, cannot have limit ordinal T-length. Thus (2) holds.

Let $U=R(x_s+\sum S)\subseteq\prod S/\sum S$ where the product and sum are taken over the set \mathfrak{C} as in (1) of 2.3. Let $M=(\sum S:(x_s))$. Then $U\approx R/M$, so $M=Rm_1+\cdots+Rm_n$ is finitely generated, since U is of type Q. Now for each i, $m_ix_s=0$ for all but finitely many $S\in\mathfrak{C}$. Hence there is an $x_{s_0}\neq 0$ such that $Mx_{s_0}=0$. But then $Rx_{s_0}\approx S_0\approx R/M\approx U$ and this is a contradiction since S_0 is of type p. Hence (1) of 2.3 is satisfied and the proof is complete.

The following corollary generalizes part of Fuchs' Theorem 72.2 [5].

COROLLARY 3.2. Let R satisfy the hypothesis of 3.1 and assume non-zero R-modules have nonzero socles. Then R is the ring direct sum of two sided ideals R_0 , R_1 , \cdots , R_n where R_0^+ is a direct sum of copies of Q and each R_t^+ , $1 \le i \le n$, is a bounded primary group.

PROOF. Since nonzero modules have nonzero socles, $R \in \mathfrak{I}$ and since by 3.1 the primary decomposition holds, we have $R = \sum_{i=0}^{\infty} R_i$. Since R has a unit element, $R = R_0 \oplus \cdots \oplus R_n$. Each of the classes \mathfrak{I}_i is closed under homomorphic images and right multiplication by elements of R is a left R-homomorphism so each R_i is a two-sided ideal. R_0 is a torsion-free divisible group and so it is a direct sum of copies of R. Each R_i , $1 \le i \le n$, is a primary group by Lemma 2.1 and since each R_i is a ring with unit, it must be a bounded group. This proves the corollary.

To construct examples of non-Artinian rings satisfying the hypotheses of Corollary 3.2, let P be an infinite product of copies of Z_p . Define the ring R by $R^+ = P \oplus Z_p$ and $(p_1, i_1)(p_2, i_2) = (i_2p_1 + i_1p_2, i_1i_2)$. Then P is the socle of R and $R/P \approx Z_p$; so nonzero modules have nonzero socles. Since R has no Q-type simples, the hypothesis of 4.1 is clearly satisfied. Since every subgroup of P is an ideal of R, it is clear that R is neither Artinian or Noetherian.

REFERENCES

- J. S. Alin, Primary decomposition of modules, Math. Z. 107 (1968), 319-325.
 MR 39 #258.
- 2. S. E. Dickson, Decomposition of modules. I. Classical rings, Math. Z. 90 (1965), 9-13. MR 32 #2445.
- 3. —, Decomposition of modules. II. Rings without chain conditions, Math. Z. 104 (1968), 349-357. MR 37 #5252.
- 4. ——, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235. MR 33 #162.
- 5. L. Fuchs, Abelian groups, Akad. Kiadó, Budapest, 1958; republished by Internat. Series of Monographs on Pure and Appl. Math., Pergamon Press, New York, 1960. MR 21 #5672; MR 22 #2644.
- 6. S. Mac Lane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114. Academic Press, New York: Springer-Verlag, Berlin, 1963. MR 28 #122.

University of Utah, Salt Lake City, Utah 84112