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A PRIMARY DECOMPOSITION FOR TORSION MODULES

J. S. ALIN

Abstract. A definition of primary module is given and a

theorem is proved characterizing rings for which each torsion

module, in the sense of S. E. Dickson, decomposes as a direct sum

of its primary submodules. This theorem is applied to obtain a

generalization of Fuchs' theorem on the additive group structure

of Artinian rings.

1. Introduction. S. E. Dickson [2], [3] has investigated a primary

decomposition for torsion modules over an arbitrary ring and Alin

[l] has characterized rings for which this primary decomposition

holds. The purpose of this note is to define "primary module" in such

a way that the primary decomposition holds for a larger class of rings,

in particular, for all Noetherian rings.

All rings R have a unit and modules are unitary left i?-modules. If

M is an i?-moduIe, M+ denotes the underlying additive group of M.

It is well known that if S is a simple i?-module, then S+ is a direct

sum of copies of Zv, the cyclic group of order p, or a direct sum of

copies of Q, the additive group of rational numbers. In the first case

we say that 5 is of type p and in the second, 5 is of type Q.

Let pi, p2, ■ ■ ■ be an indexing of the positive primes and for each

*=1, 2, • • • let S¿ be a representative set of simple i?-modules of

type pi. Let S0 be a representative set of simple i?-modules of type Q.

For i = 0, 1, ■ ■ -let 3¿ be the torsion class generated by S¿ and let 3 be

the torsion class generated by U¿™ 0 §¿ [4]. Thus 3,- (respectively 3) is

the class of all modules M such that each nonzero homomorphic

image of M has a submodule isomorphic to a member of Ss- (respec-

tively, U,"o §<)• The classes 3, 3U, 3i, • • • are closed under submodules,

direct sums, extensions and homomorphic images. It follows that each

module ikfhasa unique largest submodule M,-in 3,-. If M£3f, fèl, M

is pi-primary and if il7£30, M is Q-primary. The modules ME3 are

called torsion. The primary decomposition holds for a ring R if and

only if for each M£3, M="%2*L0 Mi (direct), i.e., each torsion module

is a direct sum of its primary submodules.

For an i?-module M, Soc(lf) denotes the socle of M. We let T^if)

= Soc(M) and extend to an ascending chain of submodules {Ta(M)}
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of M in the usual manner [l ]. If M£3, T"(M) = M for some ordinal a

and the least such ordinal is the T-length of M.

For any module M, Mt denotes the usual torsion subgroup of the

group M+ and MP, for a prime p, denotes the maximum ^-primary

subgroup of M+. Note that Mt and Mp are submodules of M.

We use Ext(A,B) for ExtlR(A,B) and Hom(^4, P) for HomR(A,B).

The reader is referred to MacLane [6] for the properties of Ext which

are used in what follows.

2. The main theorem. The following lemma, in part characterizing

the primary submodules of a module M, will be needed in the proof of

the main theorem.

Lemma 2.1. Let M£3. Then

(1) Mi = MPifori^l.
(2) (Mo)+ is a torsion-free divisible group.

Proof. (1) Clearly Soc(Mi)QMPi and by induction it is easy to see

that MiQMPi. But M{ and MVi are submodules of M so MVi/Mi is

either zero or it has a simple submodule, since Af£3. The latter

choice leads to a contradiction, hence Mi = MPi.

(2) It is clear that Soc(Afo) is divisible and torsion-free. Assume

inductively that Ta(Mo) is divisible and torsion-free. Then since

T"+1(Mo)/Ta(Mo) = Soc(M0/T°(Mo))

is a direct sum of Q-type simples and since

0 -» T"(Mo) -> T"+l(Mo) -» T"+1(Mo)/T"(Mo) -» 0

is exact, we get that Ta+1(Mo) is torsion-free divisible, since the class

of torsion-free divisible groups is closed under extensions. Since

M£3, Tß(M0) = Mo for some ß and so M0 is torsion-free divisible. This

completes the proof.

Remarks. (1) From the previous lemma and the primary decom-

position for torsion abelian groups, the primary decomposition holds

for any ring which has no Q-type simple modules. In fact, over any

ring, if Af£3 and Mo = 0, we get M= X"-i Mi.
(2) For any module M, ¿l&i M( cannot contain a simple from

the class Sy and consequently ¿Zî°-o M{ is always a direct sum.

Lemma 2.2. The primary decomposition holds for the ring R if and

only if Ext(5, T) = 0 for each Q-type simple S and each module P£3

with Po = 0.

Proof. The necessity of the condition is clear since if

0—*T—*X—»5—>0 is exact and the primary decomposition holds, we
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must have X = X0® zZî°-i X{ with A"o«S and this implies that the
sequence splits.

To prove that the condition is sufficient, let Af£3. We will prove

that M = 22(1] Mi by showing that M/¿ZrT-o Mi has no simple sub-
module. By Lemma 2.1, 23*-1 Mi=Mt, so 23*" i Mi = Mo + Mt. Also
by 2.1, Mo is divisible and so as groups we have

M       Mo + M,       K-«-8-
Mt Mt Mt

Thus any subgroup of M/M0 + Mt is isomorphic to a subgroup of

K/Mf Hence M/M0-\-Mt contains no p-type simple since K/Mt is

torsion-free as a group.

Assume M/M0 + Mt has a Q-type simple, say S = X/M0+Mlt

XQM. Now Mo + Mt/Mo~Mt so we have an exact sequence

Mo + Mt X X
0-»- « Mt->-►-=S->0.

Mo Mo     Mo + Mt

By hypothesis, this sequence must split, so X/Mo contains a Q-type

simple. Thus M/Mo contains a Q-type simple and this is a contradic-

tion. Hence Af/X)*" o M¡ has no simple submodule, so M = 23*" o Mi

and the proof is complete.

Theorem 2.3. The primary decomposition holds for the ring R if and

only if
(1) (Usée S/¿Zsee S)0 = 0, where Q is a representative set of

simples of type p.

(2) If 0—>P—>A—» Z7—>0 is an exact sequence of R-modules with K

cyclic, PESifor some i^l and U a Q-type simple, then P has nonlimit

ordinal T-length.

Proof. To see that the first condition is necessary, suppose U is

a Q-type simple contained in the factor module TT S/ T, S. Then we

have an exact sequence 0—>23 5—»A—*U—»0, where AC JJ 5. Since

the primary decomposition holds, X^ U® 23 S.  But then   UQX

çn-sso

0 ^ Hom(<7, CO Q Hom((7)n-S') = II Hom(<7,.S) = 0

and we have a contradiction.

If 0-»-P-»A-»<7->0 is exact as in (2) above, then K~P®U and

so P is cyclic. It follows that P has nonlimit ordinal T-length.

To show that (1) and (2) are sufficient, we use Lemma 2.2 and

show Ext(r, U) =0 for U a Q-type simple and TG3, T0 =0.
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By previous remarks, T = 2f-o 7\ and applying Horn ( U, — ) to the

exact sequence

0 ->¿ZTí ->T[Tí -+HTí/¿2Tí -* 0

we get the exact sequence

Som(U,U.Ti/ETi) -> Vxt(U,¿2Ti) -* Ext(U,JlT{).

But Ext(i7, U Ti) = U Ext(i/, 7\) so to show that the condition of

Lemma 2.2 holds it is sufficient to prove:

(a) Hom(<7, JJ 2V£ 7^=0,
(b) Ext(c7, r¿)=0forí'el.
By (1) and an easy modification of Lemma 2.2 of [2], (a) holds.

We prove that (b) holds by showing Ext(£7, ^4) = 0 for any ^¿-pri-

mary module A. The proof is by induction on the TMength of A.

If A is a £i-primary module of 7-length one, then A = ¿^ Sa where

each Sa is a pi-type simple. As before

Hom([/,nVEW -» Ext(J7,I>„) -» Ext(i7,n^)

is exact with right end zero since Ext( U, Sa) = 0 because U and Sa are

simples of different type. Since piU= U, but £¿(H Sa/¿^ Sa) =0, we

must have Hom(Z7, II Sa/¿Z Sa)=0. Hence Ext(ï7, A) =0 if A has
^-length one.

Now assume Ext(t/, ^4)=0 for all ¿'¿-primary modules A of T-

length ct<ß and let B have T-length ß. If

(*) 0->B^>X->U->0

is exact with B—+X the inclusion map, choose ïEJ-5. Then

0^>BnRx-+Rx-*U->0

is exact, the T-length of B(~\Rx is less than or equal to ß and it is not

a limit ordinal by (2). Let the 7-length of BC\Rx be a + 1. Then

B r\ Rx Rx
0->->->U^>0

T"(B r\ Rx)      Ta(B C\ Rx)

is exact and since Br\Rx/TaiBH\Rx) has 7-Iength one, the sequence

must split. Thus there is a submodule K of Rx containing TaiB(~\Rx)

with U~K/TaiBr\Rx). Then

0 -► TaiB DRx)^K^U-^0

is exact and since TaiBf~\Rx) has TMength ct<ß, this sequence must

split. Thus K contains a submodule isomorphic to U and so since
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PÇZRxQX, X has a submodule isomorphic to U. It follows that the

sequence (*)■ splits and this completes the proof.

3. Applications and examples.

Theorem 3.1. Let R be a ring with the property that every maximal

left ideal L of R, with R/L a Q-type simple, is finitely generated. Then
the primary decomposition holds for R.

Proof. We apply Theorem 2.3 and show that conditions (1) and

(2) hold.
Let 0—>P—»P—» P—>0 be exact with K cyclic and U a Q-type simple.

Then for some left ideals PC If of P we have P~ M/L and U-R/M.

But then M is finitely generated so M/L, and hence P, cannot have

limit ordinal P-length. Thus (2) holds.

Let U = R(xe+ ^2 "SOS IT "VS «5 where the product and sum are
taken over the set C as in (1) of 2.3. Let M = (£ S:(x,)). Then

U—R/M, so M = Rmi+ - - - +Rmn is finitely generated, since U is

of type Q. Now for each i, m,xs = 0 for all but finitely many SEQ-

Hence there is an x^^O such that MxH = 0. But then RxH^S0

œR/Mœ U and this is a contradiction since 50 is of type p. Hence

(1) of 2.3 is satisfied and the proof is complete.

The following corollary generalizes part of Fuchs' Theorem 72.2

[5].

Corollary 3.2. Let R satisfy the hypothesis of 3.1 and assume non-

zero R-modules have nonzero socles. Then R is the ring direct sum of two

sided ideals Ro, Pi, ■ • ■ , P„ where R¿ »5 a direct sum of copies of Q

and each Pt+, i^i^n, is a bounded primary group.

Proof. Since nonzero modules have nonzero socles, P£3 and

since by 3.1 the primary decomposition holds, we have P= zlîLo Ri-

Since R has a unit element, R = R0® • ■ ■ ©P„. Each of the classes

3¿ is closed under homomorphic images and right multiplication by

elements of P is a left P-homomorphism so each P< is a two-sided

ideal. Po is a torsion-free divisible group and so it is a direct sum of

copies of Q. Each P„ 1 ̂ i^n, is a primary group by Lemma 2.1 and

since each Pt- is a ring with unit, it must be a bounded group. This

proves the corollary.

To construct examples of non-Artinian rings satisfying the hypoth-

eses of Corollary 3.2, let P be an infinite product of copies of Zp.

Define the ring P by R+ = P®ZP and (pi, ii)(p2, O) = (i2pi+iip2, HÜ).

Then P is the socle of P and R/P^ZP; so nonzero modules have non-

zero socles. Since R has no Q-type simples, the hypothesis of 4.1 is

clearly satisfied. Since every subgroup of P is an ideal of R, it is clear

that R is neither Artinian or Noetherian.
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