ON A CONJECTURE OF A. J. HOFFMAN

IOSEPH ZAKS

ABSTRACT. A 3-polytope P and four closed convex sets C_1, \dots, C_4 in P are described, having the following property: every line which meets P meets at least one of the C_i 's, and for every collection of polytopes D_1, \dots, D_4 , with $D_i \subseteq C_i$ for all $1 \le i \le 4$, there exists a line which meets P and misses all of the D_i 's. This is a counterexample to a conjecture of A. I. Hoffman.

The following question was recently raised by A. J. Hoffman [2]: "If P is a d-polytope, t>0 an integer and C_1, \dots, C_k closed convex sets in P, such that every t-flat that meets P meets $\bigcup_{i=1}^k C_i$; do there exist polytopes D_1, \dots, D_k , with $D_i \subseteq C_i$ for all $1 \le i \le k$, such that if a t-flat meets P, it meets $\bigcup_{i=1}^k D_i$?"

The purpose of this note is to give a counterexample to this conjecture, with d=3, t=1 and k=4 (see Remarks 1 and 2).

A *d-polytope* here means the convex hull of a set of finitely many points in the Euclidean *d*-space E^d , having a nonempty interior, see [1].

Let P be the polytope on the following six vertices in $E^3:A_1 = (0, 0, 0), A_2 = (3, 0, 0), A_3 = (0, 3, 0), A_4 = (0, 0, 20), A_5 = (3, 0, 20)$ and $A_6 = (0, 3, 20)$.

P is a prism with a base B_1 at the level z=0 and a base B_2 at the level z=20, where

$$B_1 = \text{convex hull} \{A_1, A_2, A_3\} \text{ and } B_2 = \text{convex hull} \{A_4, A_5, A_6\}.$$

Let L_1 (L_2) be the line passing through the points (0, 0, 1) and (1, 0, 1), ((0, 0, 3) and (0, 1, 3), resp.). Let T_1 (T_2) be the cylinder containing all points within a distance of ≤ 1 to L_1 (L_2 , resp.).

We define C_i , $1 \le i \le 3$, as follows

$$C_1 = \text{convex hull}[(T_1 \cap P) \cup \{A_1, A_2, A_4, A_5\}],$$

$$C_2 = \text{convex hull}[(T_2 \cap P) \cup \{A_1, A_3, A_4, A_6\}],$$

$$C_3 = \text{convex hull}\{A_2, A_3, A_5, A_6\}.$$

 C_4 is defined as a subset of B_1 , consisting of all the points M in B_1 ,

Presented to the Society, March 27, 1970; received by the editors January 2, 1970. AMS 1969 subject classifications. Primary 5210, 5230; Secondary 5090.

Key words and phrases. Convex d-polytype, closed convex set, affine t-flat, convex planar curve.

for which there exists a point N in B_2 , such that the segment MN has distance ≥ 1 to both of the two lines L_1 and L_2 .

 C_1, \dots, C_4 were so chosen as to assure that if a line meets P, it meets $\bigcup_{i=1}^4 C_i$.

To justify our claim, it will suffice to prove the following

LEMMA 1. C₄ is a closed convex set which is not a polytope.

LEMMA 2. If D_i is a polytope in C_i , for all $1 \le i \le 4$, then there exists a line E, such that $E \cap P \ne \emptyset$ and $E \cap (\bigcup_{i=1}^4 D_i) = \emptyset$.

Proof of Lemma 1. If M = (x, y, 0) is a point in C_4 , then for some point N of B_2 the segment MN does not meet T_1 and T_2 , or else it is tangent to one, or both of them. We observe that if a point N exists, then another such point can be chosen to be a point of the edge A_5A_6 , hence of the form $(3\lambda, 3(1-\lambda), 20)$ for some $0 \le \lambda \le 1$.

Let α be a subset of the positive orthant of the xy-plane, consisting of all the points M = (x, y, 0), for which there exists a value of λ , $0 \le \lambda \le 1$, such that the segment MN, where $N = (3\lambda, 3(1-\lambda), 20)$, is tangent to both T_1 and T_2 .

Since MN is tangent to T_1 , it follows that

$$9v^2 - 3\lambda v + 3v = 10$$

(by setting the distance of the line passing through MN to the line L_1 be equal to 1).

Similarly, since MN is tangent to T_2 , it follows that

(2)
$$36x^2 + 39x\lambda + 9\lambda^2 = 50.$$

Let $(x_{\lambda}, y_{\lambda})$ be the positive solution of the equations (1) and (2), for every $0 \le \lambda \le 1$. It follows easily that $x_{\lambda} \ge x_1$ and $y_{\lambda} \ge y_0$ for all $0 \le \lambda \le 1$.

Moreover, the boundary of C_4 is the union of the following three segments: $\{(x, y_0) | x_0 \le x \le 3 - y_0\}$, $\{(x_1, y) | y_1 \le y \le 3 - x_1\}$ and $\{(x, y) | x \ge x_1, y \ge y_0 \text{ and } x + y = 3\}$, together with the arc α , represented parametrically and implicitly by (1) and (2), with $0 \le \lambda \le 1$.

To show that C_4 is convex, it is obviously enough to prove that α is a convex curve, i.e., that $d^2y/dx^2 > 0$ at every point of α .

This is a straightforward computation, which we outline: (1) implies (3) and (4), while (2) implies (5) and (6), where:

(3)
$$\frac{dx}{d\lambda} = -\frac{13x + 6\lambda}{24x + 13\lambda},$$

¹ Suppose there is a candle at each point of B_2 , and every ray passing through the interior of T_1 and T_2 is absorbed; C_4 is then the illuminated part of B_1 .

$$\frac{d^2x}{d\lambda^2} = \frac{25x - 25\lambda(dx/d\lambda)}{(24x + 13\lambda)^2},$$

(5)
$$\frac{dy}{d\lambda} = \frac{y}{6y - \lambda + 1},$$

(6)
$$\frac{d^2y}{d\lambda^2} = \frac{y + (1 - \lambda)dy/d\lambda}{(6y - \lambda + 1)^2}.$$

Since x>0, y>0 and $0 \le \lambda \le 1$, it follows from (3) that $dx/d\lambda < 0$, and from (5) that $dy/d\lambda > 0$; these, in turn, imply that $d^2x/d\lambda^2 > 0$ and $d^2y/d\lambda^2 > 0$.

Using the well-known formula

$$\frac{d^2y}{dx^2} = \left(\frac{dx}{d\lambda} \cdot \frac{d^2y}{d\lambda^2} - \frac{dy}{d\lambda} \cdot \frac{d^2x}{d\lambda^2}\right) / \left(\frac{dx}{d\lambda}\right)^3$$

it follows immediately that $d^2y/dx^2 > 0$ on α . Moreover, $d^2y/dx^2 > 0$ implies that α is not a segment.

As a result, C_4 is a closed convex set which is not a polytope, and the proof of Lemma 1 is completed.

Proof of Lemma 2. Let D_1, \dots, D_4 be polytopes, with $D_i \subseteq C_i$ for all $1 \le i \le 4$.

 D_4 is a convex (planar) polygon in C_4 , and C_4 is, by Lemma 1, a closed convex (planar) set which is not a polygon. Therefore, there exists a point R on the arc α , such that $R \notin D_4$. Since D_4 is convex, there exists the point R^* , nearest to R in D_4 . The point $S = \frac{1}{2}(R + R^*)$ is an interior point of C_4 and $S \notin D_4$.

Let S' be a point in the upper base B_2 of P, such that the segment SS' is of distance ≥ 1 from the two lines L_1 and L_2 . Since S belongs to the interior of C_4 , we may assume, without loss of truth, that S' belongs to the interior of B_2 .

Let S_1S_1' be a segment, obtained from SS' by an ϵ -push towards the face C_3 of P, such that $S_1S_1'||SS'$, S_1 is an interior point of C_4-D_4 , S_1' is an interior point of B_2 and S_1S_1' is of distance >1 from both L_1 and L_2 .

The line E, containing the segment S_1S_1 , is such that $E \cap P \neq \emptyset$ and $E \cap (\bigcup_{i=1}^4 D_i) = \emptyset$.

This completes the proof of Lemma 2.

REMARK 1. The original example, as presented to the Society, involved k=10 (with d=3 and t=1); a remark by (a student of) A. J. Hoffman reduced it to k=6; that remark enabled us to further reduce the value of k to 4.

REMARK 2. By taking the Cartesian product of our example with the q-dimensional cube I^q , we derive additional counterexamples in the cases where d=q+3 and t=q+1, for all $q \ge 1$.

REFERENCES

- 1. B. Grünbaum, Convex polytopes, Pure and Appl. Math., vol. 16, Interscience, New York, 1967. MR 37 #2085.
- 2. A. J. Hoffman, On covering of polyhedra by polyhedra, Proc. Amer. Math. Soc. 23 (1969), 123-126. MR 40 #835.

WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202