EXTENDING FREE CIRCLE ACTIONS ON SPHERES TO S³ ACTIONS

BRUCE CONRAD

ABSTRACT. Let X be a PL homotopy CP^{2k+1} corresponding by Sullivan's classification to the element $(N_1, \alpha_2, N_2, \dots, \alpha_k, N_k)$ of $Z \oplus Z_2 \oplus Z \oplus \dots \oplus Z_2 \oplus Z$.

THEOREM 1. The topological circle action on S^{4k+3} with orbit space X is the restriction of an S^3 action with a triangulable orbit space iff $\alpha_i = 0$, $i = 2, \dots, k$; and $N_1 \equiv 0 \mod 2$; and $\sum (-1)^i N_i = 0$.

If X admits a smooth structure and satisfies the hypotheses of Theorem 1, a certain smoothing obstruction arising from the integrality theorems vanishes for the corresponding S^2 action.

In this note we establish some necessary conditions for extending smooth free circle actions on homotopy (4k+3)-spheres to free S^3 actions (S^3 is the group of unit quaternions). It is known that the orbit space of a free circle action on a homotopy sphere Σ^{4k+3} is a manifold X^{4k+2} with the homotopy type of complex projective space CP^{2k+1} , while the orbit space of an S^3 action is a homotopy quaternionic projective space Y^{4k} . If the circle action is the restriction of the S^3 action (by the maximal torus theorem, the restriction is unique). then X^{4k+2} is an S^2 bundle over Y^{4k} : in fact this bundle is induced by a homotopy equivalence $Y^{4k} \rightarrow OP^k$ from the natural fibering CP^{2k+1} $\rightarrow OP^k$. In terms of D. Sullivan's classification up to PL isomorphism of PL homotopy complex projective spaces [7] we are able to state in Theorem 1 necessary and sufficient conditions for a homotopy complex projective space X^{4k+2} to fiber in such a way over some PL homotopy quaternionic projective space. We also show that if k>1the PL isomorphism class of the orbit space Y^{4k} of an S^3 action on Σ^{4k+3} is determined by the restricted circle action (the case k=1 is of course equivalent to the four dimensional Poincaré conjecture; in this case Theorem 1 implies that only the standard circle action on S^7 extends to an S^3 action).

A smooth circle action satisfying the hypotheses of Theorem 1 will thus extend to a topological S³ action with a triangulable orbit space.

Presented to the Society, August 20, 1970; received by the editors April 2, 1970. AMS 1968 subject classifications. Primary 5710, 5732, 5747.

Key words and phrases. Complex projective space, quaternionic projective space, h-smoothing, h-triangulation, triangulated vector bundle, index, Pontrjagin classes, spin manifold, \hat{A} -genus.

It is not known whether additional hypotheses will be necessary to ensure the existence of a smooth extension; as a partial result we define a smoothing obstruction which, although it fails to vanish for many piecewise linear homotopy quaternionic projective spaces, does vanish for orbit spaces of S^3 actions which extend smooth circle actions. In particular, if a smooth circle action on a homotopy S^{11} satisfies the hypotheses of Theorem 1, it is shown that the topological action to which it extends can be smoothed.

The results in §1 formed a portion of my Ph.D. thesis, written under the supervision of Professor G. E. Bredon, to whom I express gratitude.

1. Fibering homotopy complex projective spaces. Let E_0 be the canonical 4-disc bundle over QP^k . The circle group acts on E_0 in a fiber preserving manner; let \overline{E}_0 denote the orbit space. It is clear that \overline{E}_0 is a 3-disc bundle over QP^k with boundary $\partial \overline{E}_0 = CP^{2k+1}$. Recall that if M is a closed smooth manifold, an h-smoothing of M is a homotopy equivalence $f: X \rightarrow M$ where X is also a closed smooth manifold. We will say that an h-smoothing $f: X \rightarrow CP^{2k+1}$ fibers if there is an h-smoothing $g: Y \rightarrow QP^k$ such that, denoting $g^*\overline{E}_0$ by \overline{E}_Y , the induced h-smoothing $g: Y \rightarrow QP^k$ such that, denoting $g^*\overline{E}_0$ by \overline{E}_Y , the induced h-smoothing $g: X \rightarrow \overline{E}_Y \rightarrow \partial \overline{E}_0 = CP^{2k+1}$ is concordant to f (i.e. there is a diffeomorphism $c: X \rightarrow \overline{E}_Y$ such that $\overline{g}c \simeq f$). Obviously a free circle action on a homotopy S^{4k+3} extends to an S^3 action iff its orbit space fibers.

Fibering is also a sensible notion for an h-triangulation (the PL analogue of an h-smoothing) of CP^{2k+1} . Given an h-triangulation $g: Y \rightarrow QP^k$, let K_Y be a triangulation (in the sense of [6]) of E_Y . Then an h-triangulation $f: X \rightarrow CP^{2k+1}$ fibers if it is concordant to an h-triangulation $g: \partial K_Y \rightarrow \partial \overline{E}_0$ for some h-triangulation $g: Y \rightarrow QP^k$. An h-triangulation of CP^{2k+1} fibers when and only when the corresponding topological action of the circle on S^{4k+3} extends to an S^3 action with a triangulable orbit space.

D. Sullivan [7] has classified h-triangulations of CP^n and QP^m up to concordance in the following way. If $f: X \to CP^n$ is an h-triangulation, alter f if necessary to make it transverse regular on $CP^i \subset CP^n$, and let

$$K_i = \operatorname{Ker} f_* : H_i(f^{-1}(CP^i); \mathbf{Z}) \to H_i(CP^i; \mathbf{Z}).$$

If i is even, the intersection form on K_i is symmetric with index $\tau(K_i)$; put $N_{i/2}(f) = \frac{1}{8}\tau(K_i)$. If i is odd, the intersection form is antisymmetric; we denote its Arf invariant by $\alpha_{(i+1)/2}(f)$. Sullivan proved that if n>2 the integers $N_i(f)$ and the mod 2 integers $\alpha_k(f)$ are a complete set of invariants for the concordance class of f, and that any

pair $(\alpha_2, \dots, \alpha_p)$; (N_1, \dots, N_q) , with $p = \lfloor n/2 \rfloor$ and $q = \lfloor (n-1)/2 \rfloor$, occurs as the invariants of some h-triangulation of $\mathbb{C}P^n$. The case of $\mathbb{C}P^m$ is a little simpler. If $g: Y \to \mathbb{C}P^m$ is an h-triangulation which is transverse regular on $\mathbb{C}P^p \subset \mathbb{C}P^m$, put

$$K_i = \operatorname{Ker} g_* : H_{2i}(g^{-1}(QP^i)) \to H_{2i}(QP^i), \text{ and } M_i(g) = \frac{1}{8} \operatorname{index} (K_i).$$

The integers $M_i(g)$ are a complete set of invariants for the concordance class of g if m>1. Since $QP^1=S^4$ is a spin manifold, $M_1(g)$ must be even; but any (m-1)-tuple (M_1, \dots, M_{m-1}) with M_1 even will occur as invariants of some h-triangulation. To simplify our notation, put $M_0(g)=M_m(g)=0$.

THEOREM 1. An h-triangulation $f: X \rightarrow CP^{2k+1}$ fibers iff the following conditions are satisfied:

- (1) $\alpha_i(f) = 0, i = 2, \dots, k$.
- (2) $N_1(f)$ is even.
- (3) $\sum_{i=1}^{k} (-1)^{i} N_{i}(f) = 0.$

PROOF. We establish first the necessity of condition 1. Thus suppose $g: Y \rightarrow QP^k$ is an h-triangulation, and identify X with ∂K_Y via a concordance. In E_0 , CP^{2i-1} bounds the restricted bundle $E_0 \mid QP^{i-1}$. It then follows from [9] that the surgery obstruction to making f h-regular on CP^{2i-1} vanishes. This surgery obstruction is just $\alpha_i(f)$.

The proof is completed by the following

LEMMA. If $g: Y \rightarrow QP^k$ is an h-triangulation, and $\bar{g}: \partial K_Y \rightarrow \partial \overline{E}_0$ = CP^{2k+1} is the induced h-triangulation, then

$$N_{j}(\bar{g}) = M_{j}(g) + M_{j-1}(g).$$

PROOF. For a PL manifold M, let $P(M) = 1 + p_1(M) + \cdots$ be the total rational Pontrjagin class. Then, if we put $X = \partial K_Y$ and $l: X \to K_Y$ is the inclusion, $\pi: K_Y \to Y$ the projection, we have $P(X) = l^*\pi^* [P(Y)g^*P(\overline{E}_0)]$.

Hirzebruch has shown that $P(\overline{E}_0) = 1 + 4\rho$, where ρ is the generator of $H^4(QP^k; \mathbb{Z})$ dual to QP^{k-1} [3]. Put $y = g^*\rho \otimes 1 \in H^4(Y; \mathbb{Q})$. If ι is the generator of $H^2(CP^{2k+1}; \mathbb{Z})$ dual to CP^{2k} , put $x = \bar{g}^*\iota \otimes 1 \in H^2(X; \mathbb{Q})$, and notice that $l^*\pi^*(y) = x^2$. Therefore,

(1)
$$P(X) = l^*\pi^*P(Y) \cdot (1 + 4x^2).$$

Now suppose \bar{g} is transverse regular on $CP^{2i} \subset CP^{2k+1}$ and let $V_i = f^{-1}(CP^{2i})$; notice that index $V_i = 8N_i(\bar{g}) + 1$.

According to [8] the virtual index formula of Hirzebruch [4, §9] is

valid for PL manifolds. Let $L(M) = 1 + L_1(M) + \cdots$ be the total Hirzebruch class of the manifold M. An application of the virtual index formula to X yields

(2) index
$$V_i = 8N_i(\bar{g}) + 1 = \langle (\tanh x)^{2(k-i)+1}L(X), [X] \rangle$$
.

From (1) it follows that

$$L(X) = l^*\pi^*L(Y) \frac{2x}{\tanh(2x)};$$

applying a hyperbolic identity,

$$(\tanh x)L(X) = l^*\pi^*L(Y) \cdot (1 + \tanh^2 x) \cdot x.$$

Applying (2).

(3)
$$8N_i(\bar{g}) + 1 = \langle l^*\pi^*L(Y)(\tanh^2 x)^{k-i}(1 + \tanh^2 x)x, [X] \rangle$$
.

The Thom class of the bundle E_Y is δx , where $\delta: H^2(X; Q) \to H^3(K_Y, X; Q)$ is the coboundary.

If $[K_Y] \in H_{4k+3}(K_Y, X; \mathbb{Z})$ is an orientation, we may assume $\partial [K_Y] = [X]$ and $\partial x \cap [K_Y] = [Y]$. From (3) it follows that

$$8N_{i}(\bar{g}) + 1 = \langle \delta \{ l^{*}\pi^{*}L(Y)(\tanh^{2}x)^{k-i}(1 + \tanh^{2}x) \cdot x \}, [K_{Y}] \rangle$$

$$= \langle l^{*}\pi^{*}L(Y)(\tanh^{2}x)^{k-i}(1 + \tanh^{2}x) \cdot \delta x, [K_{Y}] \rangle$$

$$= \langle L(Y)(\tanh^{2}\sqrt{y})^{k-i}(1 + \tanh^{2}\sqrt{y}), [Y] \rangle.$$

The normal bundle of $QP^j \subset QP^k$ is $(k-j)E_0$; its Pontrjagin class is $(1+\rho)^{2k-2j}$. If g is transverse regular to QP^j and $W_j = g^{-1}(QP^j)$ then $h^*P(Y) = P(W_j) \cdot h^*g^*(1+\rho \otimes 1)^{2k-2j}$; $h: W_j \to Y$ being the inclusion. Thus

$$h^*L(Y) = L(W_j) \cdot h^* \left(\frac{\sqrt{y}}{\tanh \sqrt{y}}\right)^{2k-2j}$$

and

$$\begin{split} \operatorname{index} \ W_j &= \langle L(W_j), \, \big[W_j\big] \rangle \\ &= \left\langle L(Y) \cdot \left(\frac{\tanh \sqrt{y}}{\sqrt{y}}\right)^{2k-2}, \, y^{k-j} \cap \big[Y\big] \right\rangle \\ &= \left\langle L(Y) \cdot (\tanh^2 \sqrt{y})^{k-j}, \, \big[Y\big] \right\rangle. \end{split}$$

Comparing (4),

$$8N_i(\bar{g}) + 1 = index W_i + index W_{i-1}.$$

Since index $W_j = 8M_j(g)$ if j is odd and $8M_j(g) + 1$ if j is even, $N_i(\bar{g}) = M_i(g) + M_{i-1}(g)$.

REMARK. The lemma shows that the concordance class of g is determined by that of g if k>1. In terms of S^3 actions, the equivariant homeomorphism class of an S^3 action on S^{4k+3} (k>1) is determined by the circle action to which it restricts. In case k=1, Theorem 1 may be applied to the classification of smooth circle actions on S^7 to show that only the standard circle action extends to an S^3 action; see [5].

2. An obstruction to smoothing an h-triangulation. Consider the case of an h-triangulation $f: M \rightarrow S$ of a smooth manifold S. Such an h-triangulation is concordant to an h-smoothing if there is an h-smoothing $f': M' \rightarrow S$ and a piecewise differentiable homeomorphism $k: M \rightarrow M'$ such that $f'k \simeq f$.

 Ω_*^{spin} is to be the spin bordism ring. If X is a space, $\Omega_*^{\text{spin}}(X)$ will denote by analogy with [1] the spin bordism group of X. Returning to the h-triangulation $f: M \to S$, let $\eta: P \to S$ represent an element of $\Omega_p^{\text{spin}}(S)$. If we replace both M and S by their products with a sphere of high enough dimension, we can assume η is an embedding. Approximate f by a map transverse regular to $\eta(P)$, and put $Q = f^{-1}(\eta(P))$. Then define $\mu_f(\eta) = \langle \hat{A}(Q), [Q] \rangle$, where $\hat{A} = 1 + \hat{A}_1 + \cdots$ is the multiplicative sequence associated with $\frac{1}{2}\sqrt{z}/\sin h_2^2\sqrt{z}$.

PROPOSITION. $\mu_f(\eta)$ depends only on the element of $\Omega_*^{\text{spin}}(S)$ represented by η and the homotopy class of f. If we allow Ω_*^{spin} to act on Q via \widehat{A} then $\mu_f: \Omega_*^{\text{spin}}(S) \to Q$ is an Ω_*^{spin} -homomorphism. If f is concordant to an h-smoothing, μ_f takes integral values.

PROOF. The first part follows from a straightforward application of relative transversality and oriented bordism invariance of Pontrjagin numbers; details are omitted. If an embedding $\eta: P \to S$ represents an element of $\Omega_p^{\rm spin}(S)$ and $\{U\} \in \Omega_m^{\rm spin}$ then by embedding U in S^l , l large, $\{U\} \cdot \{\eta\}$ is represented by an embedding $U \times P \to S^l \times S$; if f is transverse regular to P then id $f \colon S^l \times M \to S^l \times S$ is transverse regular to $f \colon S^l \times M \to S^l \times S$ is transverse regular to $f \colon S^l \times M \to S^l \times S$. The second part follows then from the multiplicative property of the $f \colon S^l \times S^$

THEOREM 2. If $g: Y \rightarrow QP^k$ is an h-triangulation such that $\bar{g}: X = \partial K_Y \rightarrow CP^{2k+1}$ is concordant to an h-smoothing, then $\mu_g: \Omega^{\text{spin}}_*(QP^k) \rightarrow Q$ takes integral values.

PROOF. It will suffice to check this on $\Omega_{4*}^{\rm spin}(QP^k)$ since μ vanishes on components of dimension $\not\equiv 0 \mod 4$. Let $\eta: P \to QP^k$ represent an element of $\Omega_{4i}^{\rm spin}(QP^k)$; assume that η is an embedding. If $p: CP^{2k+1} \to QP^k$ is the natural projection, let $R = p^{-1}(P)$ and notice that R is a spin manifold of dimension 4i+2. Approximate g by a map transverse regular on P and let $Q = g^{-1}(P)$, $N = \bar{g}^{-1}(R)$, and $K_Q = \pi^{-1}(Q)$, so that $\partial K_Q = N$. Since N admits the structure of a smooth spin manifold, $\langle \exp(c)\hat{A}(N), [N] \rangle$ is integral if c is any element of $H^2(N; \mathbb{Z})$ [4, p. 197]. Since dimension $(N) \equiv 2 \mod 4$, $\langle \exp(c)\hat{A}(N), [N] \rangle = \langle \sinh(c)\hat{A}(N), [N] \rangle$.

Now, $P(N) = l^*\pi^*P(Q)(1+4x^2)$ where l, π , and x have been restricted to N, K_Q and N, respectively; compare (1). Therefore $l^*\pi^*A(Q) = A(N) \cdot (\sinh x)/x$, and since $\mu_q(\eta) = \langle \hat{A}(Q), [Q] \rangle$, we have

$$\mu_{\theta}(\eta) = \langle \pi^* \hat{A}(Q), [K_Q] \cap \delta x \rangle = \langle \delta(l^* \pi^* \hat{A}(Q) \cdot x), [K_Q] \rangle$$
$$= \langle \hat{A}(N) \cdot \sinh x, [N] \rangle \in \mathbf{Z}.$$

In case η is not an embedding, this proof may be modified by replacing each of X, Y, CP^{2k+1} , and QP^k by its product with S^l and approximating η by an embedding of P into $QP^k \times S^l$.

REMARKS. If $I:QP^k \to QP^k$ is the identity map and the (4k-1)-skeleton of Y is smooth, then $\mu_{\sigma}(I)$ is just the Eells-Kuiper invariant [2] of the boundary of a smoothing of $Y_0 = Y - \text{(open ball)}$. In particular it follows that an h-triangulation of QP^2 is concordant to an h-smoothing iff $u_{\sigma}(I)$ is integral. For an h-triangulation of QP^3 the necessary and sufficient condition is that $\mu_{\sigma}(QP^2)$ be integral and $\mu_{\sigma}(I)$ be even. For higher dimensions more complicated smoothing obstructions must be considered; generally u_{σ} mod 2 is an obstruction on components of dimension $\equiv 4 \mod 8$ but this refinement may still fail to detect certain nonsmoothable h-triangulations of QP^4 .

Finally, we have not solved the problem of extending smooth circle actions on homotopy spheres to smooth S^3 actions for homotopy spheres of dimension greater than seven. In dimension 11, although a topological extension of a smooth circle action can be smoothed if its orbit space is triangulable, it is conceivable that the smoothing would be inconsistent with the circle action.

REFERENCES

- 1. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750.
 - 2. J. Eells, Jr., and N. H. Kuiper, Closed manifolds which admit nondegenerate

functions with three critical points, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 411-417, MR 25 #2612.

- 3. F. Hirzebruch, Über die quaternionalen projektiven Räume, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1953, 301-312. MR 16, 389.
- 4. ——, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik aud ihrer Grenzgebiete, Heft 9, Springer-Verlag, Berlin, 1962; English transl., Die Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, Berlin, 1966, MR 25 #1155; MR 34 #2573.
- 5. D. Montgomery and C. T. Yang, Differentiable actions on homotopy seven spheres. I, Trans. Amer. Math. Soc. 122 (1966), 480-498. MR 34 #820. II, Proc. Conference Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 125-134. MR 39 #6353.
- 6. H. Putz, Triangulation of fibre bundles, Canad. J. Math. 19 (1967), 499-513. MR 35 #3675.
- 7. D. Sullivan, Triangulating and smoothing homotopy equivalences and homeomorphisms, Princeton University, Princeton, N. J., 1967. (mimeograph).
- 8. R. Thom, Les classes caractéristiques de Pontrjagin des variétés triangulées, Proc. Internat. Sympos. Algebraic Topology (Univ. Mexico, 1956) Universidad Nacional Autónoma de México; UNESCO, Mexico City, 1958, pp. 54-67. MR 21 #866.
- 9. J. B. Wagoner, Smooth and piecewise linear surgery, Bull. Amer. Math. Soc. 73 (1967), 72-77. MR 34 #5100a.

TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122