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A CHARACTERIZATION OF ORDER TOPOLOGIES
BY MEANS OF MINIMAL 7VTOPOLOGIES

W. J. THRON AND SUSAN J. ZIMMERMAN

Abstract. In this article we give a purely topological character-

ization for a topology 3 on a set X to be the order topology with

respect to some linear order R on X, as follows. A topology 3 on a

set X is an order topology iff (X, 3) is a TVspace and 3 is the least

upper bound of two minimal 7Vtopologies [Theorem 1 ]. From this

we deduce a purely topological description of the usual topology on

the set of all real numbers. That is, a topological space (X, 3) is

homeomorphic to the reals with the usual topology iff (X, 3) is a

connected, separable, 7Vspace, and 3 is the least upper bound of

two noncompact minimal TVtopologies [Theorem 2].

1. Introduction. The concept of the order topology on a linearly

ordered set goes back at least to Haar and König (1911) and is the

following:

Definition 1. A topology 3 on a set X is an order topology on X

iff there is a linear order A on X such that the sets of the forms

{y'.y < x}    and    [y'-x < y),

where xEX, form a subbase for 3.

In this definition and in what follows, we use the convention that,

if A is a pre-order relation and (a, b)ER, we may also write a^b. If,

in addition, a¿¿b, we writea<£>. The symbol a 2ïè means, technically,

that (a, ô)GA-1, where A-1= {(x, y):(y, x)GAJ, and a>b is de-

fined similarly. Whenever it is desirable to emphasize the particular

relation A, we will write a^Rb and do likewise for the other three

symbols.

There have been, historically, several topological characterizations

of intervals in the real line, which are in the same spirit as our

Theorem 2. Sierpinski (1917), Hausdorff (1927), and Pauc (1936),

among others, gave topological characterizations of the linear con-

tinuum [O, l], also known as the Jordan arc. Sierpinski worked

within Euclidean »-space, while Hausdorff and Pauc used general

metric spaces. In 1936 Ward, using a condition similar to Haus-

dorff's, characterized the open interval (0, 1) as a connected locally
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connected separable metric space X such that for each xEX, A"~ [x \

has precisely two components [15, p. 191]. Franklin and Krishnarao

[3] have recently pointed out that Ward's characterization still

holds when "metric" is replaced by "regular." Eilenberg in 1941

extended Pauc's result to show that a connected locally connected

separable topological space X is homeomorphic to a subinterval of

[O, l] iff {(x, y)'.X9£y\ is not connected in the product topology on

XXX [2, p. 43].
Both of our theorems depend on the following result, recently ob-

tained by Larson [7, p. 453] and Pahk [lO, p. 7]. We note that a

topology 3 on A" is nested iff 3 is a nested family of sets; that is, iff,

for all G, 77G3, GC77 or 77CG.

Theorem A. A To-topological space iX, 3) is minimal T0 iff 3 is

nested and the set of all complements of point closures, {~ {x} : x EX}

yj {X}, forms a base for 3.

2. Proof of Theorem 1. We first give a brief description of the lat-

tice structure on the set of topologies on a set X and then prove two

lemmas.

The set, 2, of all topologies on a fixed set X forms a lattice when

ordered by set inclusion. For any two topologies 3i and 32 on X, the

least upper bound, 3iV32, is the smallest topology containing 3iU32,

and is not, in general, 3iW32. However, if (S>i and (B2 are bases for 3i

and 32, respectively, then û3AJ(B2 is a subbase for 3iV3s and

{Bif^B2:BiE<$>i and 732Gû32} is a base for 3iV32.

With each topology 3G2, it is possible to associate a relation R3

defined by (a, b)ERs iff every open set containing b contains a. It is

clear that P3 is always reflexive and transitive and hence a pre-order

relation. Ore in his paper of 1943 defined such a relation for each

closure operator (not necessarily topological) on X. In this more

general context, he also proved the first part of Lemma 1 [9, p. 763].

In fact, the function

<P
3-» Pa

is an order "antihomomorphism," because 3iC32=i'P31DP32. Steiner

[l3, p. 383] has shown that, when restricted to the principal topol-

ogies on X, <p is actually a lattice anti-isomorphism. This same <p,

when restricted to minimal TVtopologies on X, describes a 1-1

correspondence between the minimal Po-topologies on X and the

linear order relations on X (see Lemma 2) and provides the basis for

the proof of Theorem 1.
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Lemma 1. If S is any topology on X, then

(i) 3 is To iff Pa is a partial order, and

(ii) 3 is nested iff R3 is such that, for all a, bEX, (a, b)ERs or
(b, a)ERi.

Proof, (i) If 3 is T0, then, whenever (x, y)ERz and (y, x)ER3, x

must equal y, because every neighborhood of y contains x and every

neighborhood of x contains y. Thus P3 is antisymmetric and a partial

order.

If P3 is a partial order, suppose x and y are distinct points of X

and that every neighborhood of x contains y. That is, (y, x)£Pa and

X5¿y. Therefore, since P3 is a partial order, (x, y)E.Rz and there is a

neighborhood N„ of y such that xENv.

(ii) If 3 is nested, let x, yEX and suppose (x, y)€£P3. Then there

is an open set G with y EG and x£G. Let H be any open set contain-

ing x. Then xEG=^H(^_G=i>GEH=^yEH. That is, every open set

containing x contains y and (y, x)£Pa.

Now let P3 be such that for all a, bEX, (a, b)ERs or (b, a)ERz-

Let G, P £3 and assume H($_G. Then there is an hEH with hEG.

Let x be any element of G. Then h(£G=ï{h, x)C¡EP3=>(x, h)ERz=^>x

EH, because hEHE3. Thus GEH and 3 is nested.

Using Lemma 1 together with Theorem A, we have the following

Corollary 1. A topological space (X, 3) is minimal To iff P3 is

linear and { [y'.y<x] \xEX\ W \x] is a base for 3 (where a=ô iff

(a, b)ERa).

Proof. If 3 is minimal T0, then 3 is T0 and nested by Theorem A.

Thus P3 is linear by Lemma 1, because a linear order is just a totally

ordered partial order. For each xEX,

~ |x{ = ~ {y:every neighborhood of y contains xj

= ~ {y'.x ^ y\

= \y.y < x],

because P3 is linear. Therefore,  { {y:y<x} \xEX\yj\X\ is a base

for 3.

Conversely, if P3 is linear and { {y'.y<x} \xEX\V) \X\ forms

a base for 3, then 3 is P0 and nested by Lemma 1. Furthermore, since

P3 is linear,

~ {x\ = ~ {y'.x á y] = {y'.y < x)

for each xEX, and  ¡~{íj:j;6l}U{l¡ is a base for 3. Thus 3

is minimal Po.
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Lemma 2. Let cp'.7>—>i?3 be restricted to the minimal To-topologies on

X. For each linear ordering, R, of X, let piR) be the topology with base

{ {y'-y<Rx} :xEX}\J {x}. Then p is an inverse for <p and hence <p

is a 1-1 map of the minimal T0 topologies onto the linear orders of X.

Proof. If 3 is a minimal Po-topology, then i?3 = <p(3) is linear. By

Corollary 1, a base for 3 is { {y:y<Ä3x} :xEX}KJ {x}. But by

definition, this is also a base for /¿(Ps) =m(<p(3)). Therefore, 3=/t(v?(3)).

Now let R be a linear order and let 3=ju(P). Then 3 has base

®= {{y'-y<Rx\ \xEX)\J{x). If (a, b)ER and Nb is any open

neighborhood of b, then there is a set BE<& such that 6GPCA¡,.

If B=X, then clearly aEBENb. If B^X, then B= [x:x<Rc\ for
some cEX. Then bEB=$a^LRb<RC=^a<RC=$aEBENh. That is,

(a, b)ERs=<pi3), and thus PC<p(3). Let {a, &>G<p(3) =i?3. If b<Ra,
then {x:x<Ra} is an open set in 3 containing b but not a, which

contradicts (a, b)ER¡. Therefore, because Pis linear, a Uro, (a, b)ER,

and so <p(3)CP- Hence P=^>(3) =(p(ßiR)), and ¡p and p are inverses.

Theorem 1. A topology 3 on a set X is an order topology iff (X, 3)

•¿s a Ti-space and 3 is the least upper bound of two minimal To-topologies.

Proof. If 3 is the order topology on X associated with the linear

order R, then 3 is generated by all sets of the forms

\y'.y < x}    and    {y:x<yj.

It is clear from the linearity of R that 3 is T%. Let 3i be the topology

with base

<BX = \\y.y <x\\xEX] \J \x],

and let 32 be the topology with base

ffi2= \{y:y>x\:xEX\\J\x\.

Then, by Lemma 2, 3i and 32 are minimal To-topologies, and Rs1=R

while i?32=i?_1. (BiUoi2 is a subbase for 3iV32, but is also a subbase

for 3. Therefore, 3 = 3iV32 is the least upper bound of two minimal

TV topologies.
Conversely, suppose 3 = 3iV32 where 3i and 32 are minimal To-

topologies and 3 is 7\. Then R^ and Rj2 are linear. If (a, b)ER3i(~\R3,

where a^b, let G be an open set in 3iV32 containing b. Then there

exist sets GiG3i and G2G32 such that bEGiC\G2EG. But then
{a, b)ERair\Rai=^aEGi and aGG2=>aGGinG2CG. That is, every

neighborhood of b in 3 contains a, which is impossible when 3 is 7\.

Therefore, for a^b,
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(a, b) E Aa2 => (a, b) È A3l => <6, a) G A3l <* (a, i) G A3*

<i, a) G Aaf

Hence A32 = AJ1I, and, since 3i and 32 are minimal r0, they have bases

(&i={{y:y<x}:xEX}Vj{x\    and   (S,2={{y.y>x}:xEX}yj{x},

respectively, where a^b iff (a, i^GA^. Therefore, (BiW®2 is a sub-

base for 3iV32 = 3. But (BiW(B2 also generates the order topology on

iX, Aa,), which must therefore be 3.

3. Proof of Theorem 2. Our characterization of the reals hinges on

two well-known ideas: first of all, on the correspondence between

order and topological properties of ordered spaces, and secondly, on

the characterization of the natural order on the reals developed by

Cantor and Hausdorff. We adopt the following definitions of some

common order properties:

Definition 2. Let A be a linear order on X. Then

(i) iX, R) is complete iff every subset of X bounded above has a

least upper bound;

(ii) ACA is dense in (A", R) iff whenever x <sy there is an element

zG-<4 such that x<sZ<Ky;

(hi)  (A, A) is dense iff X is dense in (A", A).

The following relations between these order properties and the

corresponding order topologies are well known :

Theorem B. If Ris a linear order on X and 3 is the associated order

topology, then (A, 3) is connected iff (A, R) is complete and dense.

Theorem C. If Ris a dense linear order on X and 3 is the associated

order topology, then (A, 3) is separable iff (A, A) has a countable dense

subset.

Eilenberg in 1941 [2, p. 40] showed that if the order topology

associated with (A, A) is connected, then (A, A) is dense and com-

plete. The actual characterization (Theorem B) appears in Murty

[8, p. 157]. Theorem C was verified in the proof of Eilenberg's

Theorem 6.1 [2, p. 43], although not stated as a separate theorem.

Hausdorff in 1914 [6, p. 101 ] generalized Cantor's characterization

[l, p. 511] of the order on the closed interval [0, l] to obtain the

following characterization of the natural order on the reals :

Theorem D. An ordered set (A, R) is order isomorphic to the reals
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with the usual ordering iff (X, R) is a complete linear order with no

greatest or least element and X has a countable subset dense in (X, R).

Theorem 2. A topological space (X, 3) is homeomorphic to the reals

with the usual topology iff (X, 3) is a connected, separable, Ti-space, and

3 is the least upper bound of two noncompact minimal To-topologies.

Proof. Let (R, 11) be the reals with the usual topology and let R

be the usual order on R.

If (X, 3) is homeomorphic to (R, 11), we may assume that (X, 3)

= (R, 11). Certainly, (R, 11) is connected, separable, and Pi. By

Theorem 1, since 11 is the order topology associated with R, 11

= 3iV32 where 3i and 32 are minimal To-topologies. Furthermore, by

the construction of 3i and 32 in the proof of Theorem 1, it is clear that

neither 3i nor 32 is compact.

Conversely, suppose that (X, 3) is a connected, separable, Pi-space

and that 3 is the least upper bound of two noncompact minimal T0-

topologies, 3i and 32. Let S = R^1 be the order associated with 3i.

Then 5 is linear and R^ = S~1 by the proof of Theorem 1. Also by

Theorem 1, 3 is the order topology on X associated with S. By

Theorem B, since (X, 3) is connected, (X, S) is complete and dense.

Then, since (X, 3) is also separable, (X, S) has a countable dense sub-

set by Theorem C. If (X, S) had a greatest element b and 61 were any

open cover of A, then we would have bEAbior some AbEG*. But then

(x, b)ES for all xEX=$xEAb for all xEX, by definition of 5. Thus
Ab = X and {Ab} would be a finite subcover, which is a contradiction.

Therefore, (X, S) has no greatest element. In like manner, (X, 5_1)

has no greatest element. That is, (X, S) has no greatest and no least

element. In summary, (X, S) is a complete linear order with no

greatest or least element and X has a countable subset dense in

(X, S). Thus (X, S) is order isomorphic to (R, R) by Theorem D.

But since (X, 3) and (R, 11) are just the order topologies on X and

R associated with 5 and P, respectively, it is clear that (X, 3) is

homeomorphic to (Pi, 11).
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