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A CHARACTERIZATION OF HEREDITARILY
INDECOMPOSABLE CONTINUA

ALBERT L. CRAWFORD AND JOHN JOBE

Abstract. In this paper a characterization of a hereditarily inde-

composable continuum is stated and proved. The motivation for

this characterization is a theorem in a recent article by John Jobe.

In this paper a characterization of a hereditarily indecomposable

continuum is stated and proved. The motivation for this characteriza-

tion is a theorem proved by Jobe in [l ]. This result is as follows:

Theorem 1. If M is the 2-finished sum of compact continua, M\ and

M2, such that M\ is hereditarily indecomposable and MiC\M2tí0, then

there exists at least one point in MiC\M2 which is a limit point of both

(Mi-Mt)ana(Mk-MÙ.

Definition. The set M is the 2-finished sum of continua Mi and

M2 if M = M¿JM2 and Mi-M2^0 and M2-M1?*0.

We shall consider the space 5 to be a Moore space satisfying Axiom

0 and Axiom 1 of R. L. Moore.

First, we suspected that the hypothesis in Theorem 1 was too

y
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strong. That is, we suspected that Mi need only be an indecomposable

continuum rather than hereditarily indecomposable. The following

example in the plane emphasizes the importance of the hypothesis of

Theorem 1 as stated. It shows the existence of a compact indecom-

posable continuum Mi and a compact continuum M2 satisfying the

hypothesis of Theorem 1 with the exception that Mi is not heredi-

tarily indecomposable and the conclusion of Theorem 1 is not true.

Example 1. Let Mi be the indecomposable continuum in the plane

consisting of those semicircles lying above the xr-axis centered at

(1/2, 0) with endpoints in the Cantor ternary set on the x-axis to-

gether with those semicircles lying below the x-axis with centers at

(1/(6-3*'), 0) and endpoints in the Cantor set. See [3].

Let M2 be the continuum consisting of Mi intersected with the

closed upper-half plane together with the line segment from (1/2,1/6)

to (1/2,1/2).
Then Mi — Mi lies below the x-axis and M2 — M\ lies above the

line y = 1/6. Hence there exists no point that is a limit point of both

Mi — M2 and M2 — Mi.

The characterization of a hereditarily indecomposable continuum

is in terms of the following defined Property Q. The definition of

Property Q is motivated by the condition in Theorem 1.

Definition. Let S be a Moore space and M a continuum in S.

Then M has Property Q in 5 if and only if for every compact con-

tinuum N in 5 such that NC\M^0 and NKJM is the 2-finished sum

of N and M, then there exists a point pEM(~\N such that p is a

limit point of both M — N and N — M. A compact continuum M in S

has Property Q hereditarily in 5 if and only if each subcontinuum of

M has Property Q in 5.

Theorem 2. Let T be a Moore space and M a compact continuum in

T. Then M is hereditarily indecomposable if and only if for every func-

tion f and Moore space S such that f imbeds M in S, then f(M) has

Property Q hereditarily in S.

Proof. Assume the condition of the theorem. Let If be a compact

continuum in a Moore space S and suppose that M is not hereditarily

indecomposable. Then there exists a decomposable subcontinuum

M' = H\JK(ZM where H and K are proper subcontinua of M' and

hEH—K. Note that since S is a Moore space then SXS is also a

Moore space. Define maps/ and g from M to 5X5 as/(m) = (m, h)

and g(m) = (h, m) for each m EM. Then, since both/ and g imbed

M in SXS, f(M') = M'X{h}=Mi and g(M') = {h} XM' = M2 are
homeomorphic to M'. Let #,=/(#) and Ki=f(K). Then M1 = H1

KJKiCf(M) is decomposable with (A, h)EHi-Ki since hEH-K.
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Also the definitions of/and g imply that MiC\M2 = {(À, h)} =HiC\M2
since HiQM'. Thus HiV)M2 is a continuum in SXS. Furthermore,

{Hi\JM2) — Mi = M2—Hi, and hence

{Hi\JM2) -Mi C Mt.

Also Mi - (HiKJMt) = Mi-HiCKi and

Mi - {Hi \J M2) C Kx.

Since Ki and M2 are disjoint closed sets, no point is a limit point of

both Mi-{Hi\JM2) and (Hi\JM2)-Mi. Hence, Mi=f(M') does not
have Property Q in 5X5. Therefore, f(M) does not have Property Q

hereditarily in SXS which is a contradiction. Therefore, M is

hereditarily indecomposable.

Conversely assume that M is a compact hereditarily indecompos-

able continuum in a Moore space T. Let/ be any function that imbeds

M in a Moore space 5 and consider/(M). Since each subcontinuum

off{M) is itself hereditarily indecomposable, applying Theorem 1 we

see that each subcontinuum of f(M) has Property Q in 5. Hence

f(M) has Property Q hereditarily in 5 and the condition of the the-

orem follows.

We thought that in Theorem 2 the condition "for every function /

and Moore space 5 such that/ imbeds M in S,f(M) has Property Q

hereditarily in 5" could be replaced by the condition "M has Prop-

erty Q hereditarily in T." To see that this cannot be done the follow-

ing example exhibits a Moore space T and a decomposable compact

continuum M in T such that M has Property Q hereditarily in T.

Thus, this example complements the statement of Theorem 2.

Example 2. Let Si and 52 be two pseudo-arcs in the plane con-

structed from ( —1, 0) to (0, 0) and (0, 0) to (1, 0) respectively such

that 5ií°i52= {(0, 0)}. Let £ = (0, 0). Let T be the subspace of the

plane such that r = 5iW52. Let H and K be nondegenerate proper

subcontinua of Si and 52 respectively such that HC\K = {p}. Then

M = H\JK is a decomposable compact continuum that has Prop-

erty Q hereditarily in T.
Suppose A7 is a subcontinuum of Tsuch that NC\M^ 0 and N^JM

is the 2-finished sum of N and M. Clearly pEN and we may assume

that (NC\Si)CH and K<Z(NC\S2). Then M-N = H-(NHSi) and
N—M=(Ni~\S2)—K. Because H and NHS2 are pseudo-arcs, p is a

limit point of both H-(NnSi) and (NC\S2) -K, Since pEMC\N it
has been verified that M has Property Q in T.

Now if M' is a subcontinuum of M, then either (a) M'ESi or (b)

M'CS2 or (c) M'-Si*0 and M'-S2?±0. In cases (a) and (b), M'
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is hereditarily indecomposable and hence has Property Q in T. In

case (c), M' has Property Q in T by the method used to show that M

has Property Q in T. Therefore, M has Property Q hereditarily in T.

Since M is decomposable the example is verified.

There is a natural question suggested by Theorem 2 and Example

2—namely, is the property in question really a property of the em-

bedding or a property of the containing space? More precisely, if M is

a compact continuum, 5 is a Moore space, and / and g are two em-

beddings of M in 5, does f{M) have Property Q hereditarily in 5 if

and only if g{M) has Property Q hereditarily in 5? Example 3 gives a

negative answer to this question.

Example 3. Let T and M be as defined in Example 2. By Theorem

2 there exists a Moore space 7\ and an imbedding function/ from M

to Ti such that f{M) does not have Property Q hereditarily in 7V

The space 7\ can be picked such that 7Y>\71 = 0. Let g be the im-

bedding from M to T such that g{m) =m, mEM. Example 2 reveals

that g(M) has Property Q hereditarily in T.

Let 5= rU7\ and A be open in 5 if and only if A is the union of an

open set in T and an open set in 7V Note that 5 is a Moore space. It

follows that/ and g can be thought of as imbeddings of M into 5 and

clearly g{M) has Property Q hereditarily in 5 while f{M) does not

have Property Q hereditarily in 5.

The authors have been able to find two other characterizations of

hereditarily indecomposable continua. These two can be found in [2 ]

and [4].
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