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LOCALLY FINITE SELF-INTERCHANGE GRAPHS

BENJAMIN L. SCHWARTZ AND LOWELL W. BEINEKE

Abstract. Graphs isomorphic to their interchanges are studied.

Using prior results of more special cases, plus one new concept, it is

possible to characterize all locally finite self-interchange graphs,

finite and infinite, connected and disconnected, with loops and

parallel edges admitted. All solutions are shown to be component-

unions of graphs from six easily described classes.

1. Introduction. If G is a (unoriented) linear graph, we define the

interchange graph of G, 1(G) as the graph H whose vertices are the

edges of G; and two vertices in H are consecutive iff the edges in G

are consecutive. (A loop is consecutive with itself [16].) A graph

isomorphic with its interchange is called a self-interchange graph

(SIG). In 1962, Ore [ll] posed the problem of characterizing SIG's.

Subsequently, progress has been made, under various combinations of

hypotheses, e.g. graphs which were connected, finite, bounded degree,

locally finite, loop-free, and/or having no parallel edges.

The relationships among the several cases has not always been

clear. For example, there are connected SIG's of bounded degree that

are not loop-free; but there are also finite-degree loop-free SIG's that

are not connected [14], [13]. All locally finite loop-free SIG's are

actually of bounded degree [ó]; but it has previously been undeter-

mined whether a locally finite SIG with loops must be of bounded de-

gree. This question, and many other similar ones, are implicitly

answered in the present paper, which solves the problem under the

hypothesis only of local finiteness, a condition less restrictive than

any previously solved case. The proof uses previous work, and one

new idea (§3).

2. Preliminaries. Let C,- denote an elementary chain of length i,

i = 0, 1, 2, 3, • • • . Let £ be Ujlo C¿> where the U denotes C-union of

graphs. (The C-union, or component-union, of two graphs, G and H,

is the graph whose components are the components of G and the

components of H.) Let 2D,- be the graph comprising two loops joined

by an elementary chain of length i,i = 0,1, 2, • • • .

Theorem 1. If G is a loop-free locally finite SIG, then G is the C-
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union of graphs of the following forms :

(1) £;
(2) a finite cycle of length i, i = 2, 3, 4, • • • ;
(3) a one-way infinite elementary chain ;

(4) a two-way infinite elementary chain.

This theorem is proved in [ó].

Another prior result which we shall need is the following.

Lemma 1. If Gis an interchange graph, say G = IiH) ; then S>0 is not a

subgraph of G. Furthermore, for i>0, 2D< is a subgraph of G iff 2D,_i is a

subgraph of H.

These results are from [15], based on earlier work of Krausz [5]

and Whitney [17].

Theorem 2. If Gis SIG with loops, then no component of G has more

than one loop.

Proof. Otherwise, there is a subgraph of the form 2D¿ in G. Let i*

be the minimum value of * for which 2D¿ is a subgraph of G. Then by

Lemma 1, we conclude that i*>0. And by the same lemma, we have

that 3l>,-«_i is subgraph of G, contradicting the minimality of i*.

3. Loop-free transformation.

Lemma 2. Let G be a graph and H its interchange graph. Assume that

G has a loop at vertex v and that x is the vertex in H corresponding to that

loop. Let G'n be the graph obtained from G by replacing the loop at v by a

new chain of length n, and let H'n be the graph obtained in the same way

by replacing the loop at x. Then H'n is the interchange graph of G'n+i for

alln^O.

Proof. The result follows easily by induction on n.

Theorem 3. Let G be a connected graph with exactly one loop. Let v

denote the vertex of the loop. Let H be the interchange graph of G, with x

the vertex of H corresponding to the loop. Let G' be the graph obtained

from G by replacing the loop at v by a new one-way infinite elementary

chain, and let H' be the graph obtained in the same way by replacing the

loop at x. Then H' is IiG').

Proof. In Lemma 2, let n increase without limit.

Remark. If \Gn} is a sequence of graphs satisfying G„CGn+i, then

the concept limn^Cr,, is meaningful. In general, a vertex or edge is an

element of lim G„ iff for some N, it is an element of all Gn for which

n^N. A rigorous development of this idea occurs in [13], where the

discussion shows the validity of the above limit-taking step.
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If G is a graph with loops, define the Loop-Free Transformation

(LFT) of G as the graph H which coincides with G, except that each

loop is deleted (but not its vertex), and replaced by a one-way in-

finite elementary chain which attaches to H at the vertex of the loop.

In terms of this, a corollary to Theorem 3 can be stated in the follow-

ing form:

Corollary 1. For graphs in which no component has more than one

loop, the operations of interchange and loop-free transformation com-

mute.

Proof. For those components that have a loop, Theorem 3 gives

the result. For those that have no loop, the LFT is the identity trans-

formation.

Theorem 4. If G is a SIG with loops, and H is the LFT of G, then H

is a loop-free SIG.

Proof. Since G is a SIG, no component of G has more than one

loop, and we have /(G) = G. Take the LFT of both sides of this equa-

tion; then commute the LFT and I operations on the left-hand side.

This gives IiH) =H.

4. Main result.

Theorem 5. If G is a locally finite SIG, then G is the C-union of

graphs of the following forms:

(D £;
(2) finite cycles of length i, i = 2, 3, • • • ;
(3) a one-way infinite elementary chain;

(4) a two-way infinite elementary chain ;

(5) a loop with a finite elementary chain (o/ any length ^ 0) adjoined;

(6) a loop with a one-way infinite elementary chain adjoined.

Proof. By Theorem 4, the LFT of G is a loop-free locally finite

SIG, and hence, by Theorem 1, consists of graphs of the form (1), (2),

(3), or (4). The only ones of these which may have had loops before

being transformed by the LFT operations are (3) or (4). In case (3), a

loop might have appeared in G at any finite point on the chain. In case

(4), a loop might have appeared in G in place of a one-way chain; but

not two loops, by Theorem 2. Hence graphs of the form of (5) and (6)

are candidates. By direct calculation they are SIG's. This completes

the proof.

This theorem brings order to the various special cases treated in the
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literature. It is now easy to characterize any subclass among the

locally finite SIG's. For example, for loop-free SIG's, omit cases (5)

and (6); for finite, connected SIG's, use only cases (2) and (5); for

SIG's all of whose components are finite, include cases (1), (2), and

(5); etc.

5. Remark. This proof obtains in an entirely new way the graph of

form (5), the loop with finite chain adjoined. This graph is notable in

being an early counterexample [3] to the conjecture that the only

finite connected SIG's were cycles, and hence regular of degree 2. The

existence of such a graph seems to have been largely neglected in the

literature; although in [14] it was shown to be the unique nonregular

finite connected SIG. Hence the new derivation is interesting in lead-

ing back to an old but little known result in finite connected graphs

through the more impressive machinery of infinite and disconnected

graphs.
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