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METRIZABILITY OF LOCALLY COMPACT
VECTOR SPACES

SETH WARNER

Abstract. By use of the theory of characters and the Pontry-

agin-van Kampen theorem, it is shown that if £ is a locally compact

vector space over a discrete division ring K of characteristic zero

and if dim^Ti <2m, where m is the cardinality of K, then E is metri-

zable.

The problem of determining whether a locally compact vector space

over a discrete division ring is metrizable arises in the study of

finite-dimensional locally compact vector spaces, because we have a

fairly concrete picture of those that are metrizable: If E is a finite-

dimensional, metrizable, indiscrete locally compact vector space over

a discrete field K and if o is the smallest open subspace of E, then the

topological additive group o admits the structure of finite-dimensional

topological vector space over the locally compact field F, where F is

either the real field R, the field Qq of ç-adic numbers, or the field

ZP((X)) of power series over the field Zp of integers modulo p, under a

scalar multiplication satisfying a.(Xx) =\(a.x) for all xEE, XEK,

aEF; moreover, if E is a topological algebra, then o is an ideal and

a.(xy) = (a.x)y, a.(yx) =y(a.x) for all aEF, xEo, yG-<4; finally, K is

algebraically isomorphic to a subfield of finite codegree of a finite

extension of F [4, Theorems 3 and 5]. Here we shall consider the

special case of this problem where the scalar field has characteristic

zero.

First, we need a lower bound on the dimension of nonzero compact

vector spaces. Let K be a division ring, equipped with the discrete

topology. We denote by K the (compact) character group of the

discrete additive group K, made into a right topological vector space

over K by defining u.\:x^>u(/Xx) for all uEK", XEK, xEK [3,

Theorem l].

Theorem 1. If K is an infinite division ring of cardinality m, then
dimKK~=2m.

Proof. Case 1. The characteristic of K is zero. Then for some

cardinal number n the additive group of K is isomorphic to Qm, the
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direct sum of n copies of the additive group Q of rationals, where

n = mif m>K0and where 1 ̂ n^Noif m = ^o- Hence if" is topologically

isomorphic to (Q~)n, the cartesian product of n copies of Q [2,

(23.21), p. 364], and card (0>c [2, (25.4), p. 404]. If m>N0, then
card (XÄ)=cn = cm = 2m>m,sodimxX^ =2ra. If m = No, then card CO

= cn = c> rtt, whence again dimx K  = 2m.

Case 2. The characteristic of K is a prime p. Then the additive

group of K is isomorphic to Z^\ so K is topologically isomorphic to

(Zp)m. Hence card(iO =pm = 2m>m, sodimK K" =2m.

As a consequence of Theorem 1, we note that if K is uncountable,

then K is a nonmetrizable compact X-vector space of dimension 2m

[3, Theorem 8].

Theorem 2. Let K be a discrete division ring of characteristic zero.

If E is a locally compact, totally disconnected K-vector space, then E is

metrizable.

Proof. Let Q be the prime field of K. By [2, (7.7), p. 62], E con-

tains a compact open subgroup V. Let F=f\ {aV'.aEQ* }■ Then Pis a

compact vector space over Q and hence is connected [3, Theorem 9].

Thus P=(0). Hence, as V is compact, for any neighborhood W of

zero there exist cti, . . . , anEQ* such that W~3aiVr\ . . . (~\anV.

Therefore   {aiV(~\ . . . r\anV'.ai.anEQ*}   is a fundamental

system of neighborhoods of zero in E ; in particular, E is metrizable.

Theorem 3. Let K be a discrete division ring of characteristic zero,

and let m = card (-ST). If E is a locally compact K-vector space and if

dimx E < 2m, then E is metrizable.

Proof. Let C be the connected component of zero. By Theorem 2,

E/C is metrizable. By [2, (e), p. 47], it therefore suffices to show that

C is metrizable. Hence we may assume that E is connected. By the

theorem of Pontryagin and van Kampen [2, (9.14), p. 95], the

topological additive group E is the topological direct sum of Rm and

H, where H is a compact subgroup. Let u be the (continuous) projec-

tion of E on Rm along H. If hEH, then the closed additive subgroup

(Zh)~ generated by h is compact as it is contained in H; ii\EK, then

(Z\h)~ =\(Zh)~, a compact subgroup, whence u((Z\h)~) = (0) as

Rm contains no nonzero compact additive subgroups, and therefore

\hE(Z\h)~C-H. Hence H is a vector subspace of E. By Theorem 1,

[3, Theorem 6], and our hypothesis, H= (0). Hence E = Rm and thus

is metrizable.

If K is countable, we may improve Theorem 3 :

Theorem 4. Assume the Continuum Hypothesis. If K is a countable,

discrete division ring of characteristic zero and if E is a locally compact
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K-vector space such that dim^ E g c, then E is metrizable.

Proof. As in the proof of Theorem 3, we may assume that E is the

topological direct sum of Rm and a compact subspace H. By [3,

Theorem 6], H is topologically isomorphic to the compact K-vector

space (K )n, the cartesian product of n copies of K , for some cardinal

number n. If n>K0, then card(2C")" = cn>c, sodimjcE^dimic2í>c, a

contradiction. Hence n^Xo, so H is metrizable as K is [3, Theorem

8]. Thus E is metrizable.

It is an open question whether similar theorems hold for locally

compact vector spaces over fields of prime characteristic. At any rate,

we may take care of the one-dimensional case:

Theorem 5. If E is an indiscrete, one-dimensional locally compact

vector space over a discrete field K, then there is a topology on K making

K into an indiscrete locally compact field and E a topological vector space

over K, so topologized ; in particular, E is metrizable.

Proof. The proof is similar to that of [3, Theorem 10]. We topol-

ogize K so that /:X>—»Xa is a homeomorphism, where a is a nonzero

vector. Then K is locally compact; (X, ß) >->X+M is continuous, since

each of the maps (X, ß) •—> (Xa,ßa) •—*\a-\-ßa= (\-\-ß)a •—»X+juis; and

for each aEK, X •—* a\ is continuous, since each of the maps X *-> Xa

>-» aXa ■—» aX is. With the induced topology, the multiplicative group

K* satisfies the hypotheses of Ellis's theorem [l, Theorem 2], so K* is

a locally compact group. In particular, the mapping (X, ß) •—» X/¿ is

continuous at (1, 1) ; it is therefore also continuous at (0,0), for if Fis a

neighborhood of zero, there exists a neighborhood U of zero such that

(1 + U)(l+U)Q1 + V, whence UUQU+U+UU=(l+U)(l + U)
— 1ÇF. Therefore K is an indiscrete locally compact field, so its

topology is given by an absolute value; consequently, E is also

metrizable. Clearly E is a topological vector space over K, as each of

the maps (X, ßa) *-* (X, ß) *-* \ß •-* \ßa is continuous.
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