METRIZABILITY OF LOCALLY COMPACT VECTOR SPACES

SETH WARNER

ABSTRACT. By use of the theory of characters and the Pontryagin-van Kampen theorem, it is shown that if E is a locally compact vector space over a discrete division ring K of characteristic zero and if $\dim_K E < 2^m$, where m is the cardinality of K, then E is metrizable.

The problem of determining whether a locally compact vector space over a discrete division ring is metrizable arises in the study of finite-dimensional locally compact vector spaces, because we have a fairly concrete picture of those that are metrizable: If E is a finitedimensional, metrizable, indiscrete locally compact vector space over a discrete field K and if \mathfrak{o} is the smallest open subspace of E, then the topological additive group o admits the structure of finite-dimensional topological vector space over the locally compact field F, where F is either the real field R, the field Q_q of q-adic numbers, or the field $\mathbf{Z}_{p}((X))$ of power series over the field \mathbf{Z}_{p} of integers modulo p, under a scalar multiplication satisfying $\alpha.(\lambda x) = \lambda(\alpha.x)$ for all $x \in E$, $\lambda \in K$, $\alpha \in F$; moreover, if E is a topological algebra, then o is an ideal and $\alpha.(xy) = (\alpha.x)y, \alpha.(yx) = y(\alpha.x)$ for all $\alpha \in F$, $x \in 0$, $y \in A$; finally, K is algebraically isomorphic to a subfield of finite codegree of a finite extension of F [4, Theorems 3 and 5]. Here we shall consider the special case of this problem where the scalar field has characteristic zero.

First, we need a lower bound on the dimension of nonzero compact vector spaces. Let K be a division ring, equipped with the discrete topology. We denote by $K^{\hat{}}$ the (compact) character group of the discrete additive group K, made into a right topological vector space over K by defining $u.\lambda:x\mapsto u(\lambda x)$ for all $u\in K^{\hat{}}$, $\lambda\in K$, $x\in K$ [3, Theorem 1].

THEOREM 1. If K is an infinite division ring of cardinality m, then $\dim_K K^{\hat{}} = 2^m$.

PROOF. Case 1. The characteristic of K is zero. Then for some cardinal number n the additive group of K is isomorphic to $Q^{(n)}$, the

Received by the editors January 20, 1970.

AMS 1968 subject classifications, Primary 4601.

Key words and phrases. Topological vector space, topological algebra, locally compact, metrizability.

direct sum of \mathfrak{n} copies of the additive group Q of rationals, where $\mathfrak{n}=\mathfrak{m}$ if $\mathfrak{m}>\aleph_0$ and where $1\leq \mathfrak{n}\leq \aleph_0$ if $\mathfrak{m}=\aleph_0$. Hence K is topologically isomorphic to $(Q^{\hat{}})^{\mathfrak{n}}$, the cartesian product of \mathfrak{n} copies of $Q^{\hat{}}$ [2, (23.21), p. 364], and card $(Q^{\hat{}})=\mathfrak{c}$ [2, (25.4), p. 404]. If $\mathfrak{m}>\aleph_0$, then card $(K^{\hat{}})=\mathfrak{c}^{\mathfrak{m}}=\mathfrak{c}^{\mathfrak{m}}=\mathfrak{c}^{\mathfrak{m}}>\mathfrak{m}$, so $\dim_K K^{\hat{}}=\mathfrak{c}^{\mathfrak{m}}$. If $\mathfrak{m}=\aleph_0$, then card $(K^{\hat{}})=\mathfrak{c}^{\mathfrak{n}}=\mathfrak{c}>\mathfrak{m}$, whence again $\dim_K K^{\hat{}}=\mathfrak{c}^{\mathfrak{m}}$.

Case 2. The characteristic of K is a prime p. Then the additive group of K is isomorphic to $\mathbb{Z}_p^{(m)}$, so $K^{\hat{}}$ is topologically isomorphic to $(\mathbb{Z}_p)^m$. Hence $\operatorname{card}(K^{\hat{}}) = p^m = 2^m > m$, so $\dim_K K^{\hat{}} = 2^m$.

As a consequence of Theorem 1, we note that if K is uncountable, then $K^{\hat{}}$ is a nonmetrizable compact K-vector space of dimension 2^m [3, Theorem 8].

THEOREM 2. Let K be a discrete division ring of characteristic zero. If E is a locally compact, totally disconnected K-vector space, then E is metrizable.

PROOF. Let Q be the prime field of K. By [2, (7.7), p. 62], E contains a compact open subgroup V. Let $F = \bigcap \{\alpha V : \alpha \in Q^*\}$. Then F is a compact vector space over Q and hence is connected [3, Theorem 9]. Thus F = (0). Hence, as V is compact, for any neighborhood W of zero there exist $\alpha_1, \ldots, \alpha_n \in Q^*$ such that $W \supseteq \alpha_1 V \cap \ldots \cap \alpha_n V$. Therefore $\{\alpha_1 V \cap \ldots \cap \alpha_n V : \alpha_1, \ldots, \alpha_n \in Q^*\}$ is a fundamental system of neighborhoods of zero in E; in particular, E is metrizable.

THEOREM 3. Let K be a discrete division ring of characteristic zero, and let $\mathfrak{m} = \operatorname{card}(K)$. If E is a locally compact K-vector space and if $\dim_K E < 2^{\mathfrak{m}}$, then E is metrizable.

PROOF. Let C be the connected component of zero. By Theorem 2, E/C is metrizable. By [2, (e), p. 47], it therefore suffices to show that C is metrizable. Hence we may assume that E is connected. By the theorem of Pontryagin and van Kampen [2, (9.14), p. 95], the topological additive group E is the topological direct sum of R^m and H, where H is a compact subgroup. Let u be the (continuous) projection of E on R^m along H. If $h \in H$, then the closed additive subgroup $(Zh)^-$ generated by h is compact as it is contained in H; if $\lambda \in K$, then $(Z\lambda h)^- = \lambda(Zh)^-$, a compact subgroup, whence $u((Z\lambda h)^-) = (0)$ as R^m contains no nonzero compact additive subgroups, and therefore $\lambda h \in (Z\lambda h)^- \subseteq H$. Hence H is a vector subspace of E. By Theorem 1, [3, Theorem 6], and our hypothesis, H = (0). Hence $E = R^m$ and thus is metrizable.

If K is countable, we may improve Theorem 3:

THEOREM 4. Assume the Continuum Hypothesis. If K is a countable, discrete division ring of characteristic zero and if E is a locally compact

K-vector space such that $\dim_{\mathbb{R}} E \leq c$, then E is metrizable.

PROOF. As in the proof of Theorem 3, we may assume that E is the topological direct sum of R^m and a compact subspace H. By [3, Theorem 6], H is topologically isomorphic to the compact K-vector space $(K^{\hat{}})^n$, the cartesian product of n copies of $K^{\hat{}}$, for some cardinal number n. If $n > \aleph_0$, then $\operatorname{card}(K^{\hat{}})^n = \mathfrak{c}^n > \mathfrak{c}$, so $\dim_K E \ge \dim_K H > \mathfrak{c}$, a contradiction. Hence $n \le \aleph_0$, so H is metrizable as $K^{\hat{}}$ is [3, Theorem 8]. Thus E is metrizable.

It is an open question whether similar theorems hold for locally compact vector spaces over fields of prime characteristic. At any rate, we may take care of the one-dimensional case:

THEOREM 5. If E is an indiscrete, one-dimensional locally compact vector space over a discrete field K, then there is a topology on K making K into an indiscrete locally compact field and E a topological vector space over K, so topologized; in particular, E is metrizable.

PROOF. The proof is similar to that of [3, Theorem 10]. We topologize K so that $f:\lambda\mapsto\lambda a$ is a homeomorphism, where a is a nonzero vector. Then K is locally compact; $(\lambda,\mu)\mapsto\lambda+\mu$ is continuous, since each of the maps $(\lambda,\mu)\mapsto(\lambda a,\mu a)\mapsto\lambda a+\mu a=(\lambda+\mu)a\mapsto\lambda+\mu$ is; and for each $\alpha\in K$, $\lambda\mapsto\alpha\lambda$ is continuous, since each of the maps $\lambda\mapsto\lambda a\mapsto\alpha\lambda a\mapsto\alpha\lambda$ is. With the induced topology, the multiplicative group K^* satisfies the hypotheses of Ellis's theorem [1, Theorem 2], so K^* is a locally compact group. In particular, the mapping $(\lambda,\mu)\mapsto\lambda\mu$ is continuous at (1,1); it is therefore also continuous at (0,0), for if V is a neighborhood of zero, there exists a neighborhood U of zero such that $(1+U)(1+U)\subseteq 1+V$, whence $UU\subseteq U+U+UU=(1+U)(1+U)-1\subseteq V$. Therefore K is an indiscrete locally compact field, so its topology is given by an absolute value; consequently, E is also metrizable. Clearly E is a topological vector space over K, as each of the maps $(\lambda,\mu a)\mapsto(\lambda,\mu)\mapsto\lambda\mu\mapsto\lambda\mu a$ is continuous.

REFERENCES

- 1. Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119-125. MR 19, 561.
- 2. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158.
- 3. Seth Warner, Compact and finite-dimensional locally compact vector spaces, Illinois J. Math. 13 (1969), 383-393. MR 39 #3282.
- 4. ——, Locally compact commutative artinian rings, Illinois J. Math. (to appear).

DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706