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A GENERAL DIFFERENTIAL EQUATION
FOR CLASSICAL POLYNOMIALS

B. NATH

Abstract. Agrawal and Khanna [l ] have derived the two partial

differential equations satisfied by the polynomial set B„(x, y). In

this paper we shall present a generalization of these results.

Introduction. The purpose of the present paper is to derive three

partial differential equations satisfied by the polynomial set

W^sf™ (M> v< x< V) which is the generalization of as many as forty

classical polynomials such as Legendre polynomials, Hermite poly-

nomials, Jacobi polynomials, Gegenbauer polynomials, Sister Celine

polynomials, Bedient polynomials, generalized Bessel polynomials

etc. The polynomial set Wl^j^'m'(u, v, x, y) has been defined by

means of the generating relation

(1 - mxt)-\Fq[(aP); (bg); Nutm/(\ - mxt)^](i - Avtm')~x'

X P-Fq,[(ap.); (£); N'yt/(\ - Avt-'Y]
(1.1)

W„;y,y    (u, v, x, y)t
\,\'\m,m'

valid under the conditions given in [2]. Several other results for the

polynomial set  W^;™,m'(u, v, x, y)  have also been given in  [2].

Substituting u~m for u and putting 7 = 0, 7'=0, X = 0, X'=0 in

(1.1), we obtain [l, p. 646 (1.1)].

Frequent use will be made of the notations given in [l ].

Differential equations for Wl^,m'(u, v, x, y). Expanding the left

hand side of (1.1) in ascending power of t, using the equality

Zn"=o 2Xo M, n) = £;=0 EKö1 *(*. n-mk) and equating co-
efficients of tn on both sides, we have

nm-^n! „m [(ap)]k[(a'p,)].-m'Áyk+\)n-.-mk

wn= ¿_,   2-,    I*,
(2.1) ,_o   *-o      p=o     [(bg)]k[(b'l)]s-m'l,(n-s-mk)(s-m'p)(k)(p)

X (y's - y'm'p+X')p {mx} n~'-mk {N'y} •~m'" {N u}k {A v} »,
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where Wn stands for W^;™'(u, v, x, y).

Let us denote

d d d d
di = x — ;        d2 = y — >        63 = u —    and    64 = v — ■

dx dy du dv

Let us consider

82{e2 + (b'q.) - l}(r'ôo + x' - y)Yiy$t + B1 + X} Wn.

We have

ei{d2+(b'q.)-i\(y'e2+x'-y')r\yes+ei+x}wn

n      [n—s/m]      [elm']

= z z   z
j=l       ic-0 p-0

{j-m'p}{j-w'p+(4)}(7'{i-»î'p}+X'-T')7'{X+T*+re-5-^}

(n-s-«*)(i-»V)(*)(p)[WM(ô;0]~>

X {X+y¿-f re —s—w¿} [(ap)]k[(ap-)]^m,p(yk-\-X)n-.-mk(y's — y'm'p-\-X'),,

X{mx)n-,-mk{Ny}*-m'"{Nu}k{Av}''

n—\  [n—s—l/m]     [í+1/m']

»_0 i—0 p—0

{(<v)+s—w'p} (t'{í—w'p} +X')„+y>{n — s—mk] (yk+X)n^,-mk

(n-s-mk)(s-m'p)(P)(k)[(bq)]k[(b'q>)]i-mll,

X[(ap)]k[(apr)],_m,f,{N'y/mx}{mx}n-°-mk{Ny}s-m''{Nu}k{Av}<>

= {N'y/mx}6i{62+(a'p.)}(y'e2+X'+ei)Y.

Therefore,

(2.2)

■ie2fl\   <=i
(fit + b'i - l)(y'62 + X' - 7')y(TÖ3 + Öi + X)J-

- N'ydi fi (02 + a'i)(y'62 + X' + 04)1 IF„
•=i J

= 0,

which is one of the differential equations for the polynomial set

W^m'(u, v, x, y).

Similarly, it can be also shown that the other partial differential

equations for W^fy;™,m (u, v, x, y) are given by
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[ (N'y)*** ft (1 - «i - Ö2 - «'Ml - a' - 7'ff, - y'm')y.m.
L «-i

(2.3)        X (04 - X' - y% - y'm')y.n. - (-1)*'™'

X (Av)(y02 + \' + 04) (1 + 02 - «')«' ft (»« + 02 - »')-»] T7n

= 0.

and

(2.4)
[

(»*)"*« fl (03 + o¿ - 1)(X + 703 - y)y(X + 01 + 70s - 7)m
»-1

- ¿V«(l + 0i - m)m(\ + 0i + 703)7' fl (03 + o.)l W-
<-l J

= 0.

The equations  (2.2),   (2.3)   and   (2.4)   are  the partial  differential

equations satisfied by the polynomial set 17^;™'m (u, v, x, y).
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