APPROXIMATION BY HOMEOMORPHISMS AND SOLUTION OF P. BLASS PROBLEM ON PSEUDO-ISOTOPY

W. HOLSZTYŃSKI

ABSTRACT. For every map of $f:S^1 \rightarrow S^1 = \{z \in C: |z| = 1\}$ of degree 1, existence of a pseudo-isotopy $h:S^1 \times I \rightarrow R = \{z \in C: |z| \geq 1\}$ such that h(z, 0) = z and h(z, 1) = f(z) is established. On the other hand (i) maps of I^n into $I^n \times 0 \subset E^{n+1}$ cannot be, in general, uniformly approximated by homeomorphic embeddings of I^n in E^{n+1} for n > 1, and (ii) maps of S^n into $S^n \subset E^n$ of degree 1 cannot be, in general, extended to a pseudo-isotopy of S^n into E^{n+1} .

P. Blass asked me: Can every mapping $g: S^n \rightarrow S^n$ of degree 1 be obtained by a pseudo-isotopy in Euclidean space E^{n+1} from an embedding? Does there hold an analogous assertion for mappings of S^n into itself of other degree?

We will show that the answer is positive for n=1 (see §1) and negative for n>1 (see §4).

1. 1-dimensional case of a map of degree 1. First we will describe the most intuitive case. Some more general and stronger results are contained in §2.

Let C be the complex plane,

$$S^1 = \{ z \in C : |z| = 1 \},$$

 $R = \{ z \in C : |z| \ge 1 \}.$

(1.1) THEOREM. Let $f: S^1 \to S^1$ be a map of degree 1. Then there exists a homotopy $F: S^1 \times I \to R$ such that $F \mid S^1 \times \{t\}$ is a homeomorphic embedding for every $t \in I \cdot \{1\}$, and F(z, 1) = f(z) for every $z \in S^1$.

PROOF. Instead of pair (R, S^1) we will consider the homeomorphic pair $(S^1 \times E^+, S^1 \times \{0\})$, where E^+ is the set of all nonnegative reals. Let $h: S^1 \times I \rightarrow S^1$ be a homotopy such that h(z, 0) = 2 and h(2, 1) = f(z) for $z \in S^1$. Next, let

(1.2)
$$u(z, t) = h(z, t)z^{-1}$$
 for $(z, t) \in S^1 \times I$.

Then $u(S^1 \times \{0\}) = 1$, so that there exists a mapping $v: S^1 \times I \rightarrow E^+$

Received by the editors January 7, 1970.

AMS 1970 subject classifications. Primary 57A35, 57A05; Secondary 55C25.

Key words and phrases. Pseudo-isotopy, generalizated pseudo-isotopy, isotopy domination, approximation by homeomorphisms, maps of degree 1, sphere S^1 and S^n , complex plane C, Euclidean space E^{n+1} .

such that $u=e^{2\pi i \cdot v}$. Homotopy $F_0\colon S^1\times I\to S^1\times E^+$ given by formula $F_0=h\Delta v$ i.e. $F_0(z,t)=(h(z,t),v(z,t))$ has the following two properties: if t<1 and $z_1\neq z_2$ and $h(z_1,t)=h(z_2,t)$ then $u(z_1,t)\neq u(z_2,t)$ and $F_0(z_1,t)\neq F_0(z_2,t)$. Thus $F_0\big|S^1\times \big\{t\big\}$ is a homeomorphic embedding for t<1. The second property is:

$$F_0(z, 1) = (f(z), v(z, 1)).$$

Thus the required homotopy $F: S^1 \times I \rightarrow S^1 \times E^+$ can be given by

$$F(z, t) = F_0(z, t/2) \qquad \text{for } 0 \le t \le \frac{1}{2},$$

= $(f(z), (2 - 2t) \cdot v(z, 1)) \qquad \text{for } \frac{1}{2} \le t \le 1.$

REMARK. A homotopy F on X such that $F|X \times \{t\}$ is a homeomorphic embedding for $0 \le t < 1$ is said to be a pseudo-isotopy (compare F from Theorem (1.1)).

- 2. 1-dimensional case of a map of degree n. We will give a generalization of pseudo-isotopy.
- (2.1) DEFINITION. Given topological spaces X, Y, a mapping $g: X \rightarrow Y$ is isotopically dominated by a mapping $f: X \rightarrow Y$ iff there exists a homotopy $F: X \times I \rightarrow Y$ such that
 - (i) F(x, 0) = f(x) and F(x, 1) = g(x).
- (ii) If $0 \le t < 1$ and $f(p) \ne f(q)$ then $F(p, t) \ne F(q, t)$ for every p, $q \in X$.
- (iii) If $\frac{1}{2} \le t < 1$ then F(p, t) = F(q, t) iff $F(p, \frac{1}{2}) = F(q, \frac{1}{2})$, for every $p, q \in X$.

The homotopy F will be called a pseudo-isotopy. In the case of a homeomorphic embedding f and compact X the homotopy F is a pseudo-isotopy in the usual sense.

Let us remark that in such a case also the homeomorphic embedding f is isotopically dominated by g (we can define a respective pseudoisotopy G by G(x, t) = F(x, 1-t)).

(2.2) THEOREM. If, for f, $g: S^1 \rightarrow S^1$, R ord f = ord g then g is isotopically dominated by f in R.

PROOF. Let $h: S^1 \times I \rightarrow S^1$ be a homotopy that connects f and g, i.e. h(z, 0) = f(z) and h(z, 1) = g(z). Next, let

$$u(z, t) = h(z, t)(f(z))^{-1}$$
 for $(z, t) \in S^1 \times I$ (compare (1.2)).

Then $u(S^1 \times \{0\}) = 1$ so that there exists a mapping $v: S^1 \times I \to E^1$ into the real line E^1 such that $u = e^{2\pi i \cdot v}$. Then the desired pseudo-isotopy $F: S^1 \times I \to R$ is given by

(2.3)
$$F(z, t) = v'(z, 2t) \cdot h(z, 2t) \qquad \text{for } 0 < t < \frac{1}{2},$$
$$= (2(1 - t)v'(z, t) + 2t - 1) \cdot g(z) \qquad \text{for } \frac{1}{2} \le t \le 1,$$

where $v'(z, t) = 1 + v(z, t) - \inf_{x \in S^1} v(x, t)$.

Indeed, F is a well-defined mapping and condition (i) holds. Next, if $f(p) \neq f(q)$ and h(p, t) = h(q, t) then $u(p, t) \neq u(q, t)$, and consequently $v'(p, t) \neq v'(p, t)$. But if $h(p, t') \neq h(q, t')$ or $v'(p, t') \neq v'(q, t')$ for $t' = \min(2t, 1)$ and t < 1, then $F(p, t) \neq F(q, t)$. Thus condition (ii) holds. It is easy to see that condition (iii) also holds.

- (2.4) COROLLARY. If $g: S^1 \rightarrow S^1$ is a mapping of order 1 then there exists a homotopy $F: S^1 \times I \rightarrow R$ such that
 - (*) F(z, 0) = z and F(z, 1) = g(z) for every $z \in S^1$,
 - (**) $F|S^1 \times \{t\}$ is a homeomorphic embedding for $0 \le t < 1$.

Looking for $F \mid S^1 \times \left[\frac{1}{2}; 1\right]$ at (2.3) it is easy to obtain the following

- (2.5) COROLLARY. Let ord $f = \text{ord } g \text{ for } f, g: S1 \rightarrow S1$. Then there exist $f_1: S^1 \rightarrow S^1 \times I$ and $f_2: f_1(S^1) \rightarrow S^1$ such that $f = f_2 \circ f_1$ and $g = p \cdot f_1$, where $p = S^1 \times I \rightarrow S^1$ is the projection (p(z, t) = z).
- (2.6) COROLLARY. If ord g=1 for $g: S^1 \rightarrow S^1$, then there exists a homeomorphic embedding $f_1 = S^1 \rightarrow S^1 \times I$ such that $g = p \circ f_1$.
- 3. Approximations by homeomorphisms. Let $Q^n = \{x \in E^n : |x| \le 1\}$, $S^{n-1} = \dot{Q}^n$ and let $\varphi : S^{n-1} \to S^{n-1} \times \{0\} \subset E^{n+1}$ be a continuous mapping. Next let X_1 be a space obtained from Q^n by identification of points x, x' such that $\varphi(x) = \varphi(x')$ and let X_2 be a space obtained from $S^{n-1} \times I$ by identification of points (x, 0) and $(\varphi(x), 1)$. Then X_1, X_2 are the compact metrizable spaces such that

$$H_{n-1}(X_1) = Z_k$$
 and $H_{n-1}(X_2) = Z_{k-1}$

where $k = \text{ord } \varphi$ (we shall consider Čech homology theory).

(3.1) THEOREM. Under the assumption $|\operatorname{ord} \varphi| > 1$, there does not exist a sequence of homeomorphic embeddings of Q^n into E^{n+1} which is uniformly convergent to a mapping $g: Q^n \to E^{n+1}$, such that $g(x) = (\varphi(x), 0)$ for $x \in S^{n-1}$ and $g^{-1}(S^{n-1} \times \{0\}) = S^{n-1}$.

PROOF. Let $f: Q^n \to E^{n+1}$ be a homeomorphic embedding of Q^n into E^{n+1} such that

$$\epsilon = \epsilon(f) = \max_{x \in Q^{n-1}} |f(x) - g(x)| < 1.$$

¹ In fact, we think that there does not exist such f.

Then we define $h_f: X_1 \rightarrow E^{n+1}$ as follows

$$h_f(x) = f\left(\frac{x}{1-\epsilon}\right) \quad \text{for } |x| \le 1-\epsilon$$

$$= \frac{1-|x|}{\epsilon} \cdot f\left(\frac{x}{|x|}\right) + \left(1-\frac{1-|x|}{\epsilon}\right) \cdot g(x).$$

Now, if for a sequence $f_1, f_2, \dots, \epsilon = \epsilon(f_n) \to 0$ then the mappings $h_f: X_1 \to R^{n+1}$ are arbitrarily fine (i.e. under a metric in X_1 the mappings h_{f_n} are δ_n -mappings with $\delta_n \to 0$). For this reason $H_{n-1}(h_f(X_1))$ contains a cyclic element of order $k = \text{ord } \varphi$, for an embedding f (to prove it see for instance [1, p. 39] and [2]). But $h_f(X_1)$ is a subspace of E^{n+1} . This contradiction shows the truth of the theorem.

(3.2) THEOREM. Let $g: S^{n-1} \times I \to E^{n+1}$ be a mapping such that $g(x, 0) = (x, 0), g(x, 1) = (\varphi(x), 0)$ for every $x \in S^{n-1}$, and $g^{-1}(S^{n-1} \times \{0\})$ = $S^{n-1} \times \{0, 1\}$. Then, under the assumption $|\operatorname{ord} \varphi - 1| > 1$, there does not exist a sequence of homeomorphic embeddings of $S^{n-1} \times I$ into E^{n+1} which is uniformly convergent to g.

PROOF. Let $f: S^{n-1} \times I \rightarrow E^{n+1}$ be a homeomorphic embedding such that

$$\epsilon = \epsilon(f) = \max_{(x,t) \in S^{n-1} \times I} |f(x,t) - g(x,t)| < \frac{1}{2}.$$

Then we define $h_f: X_2 \rightarrow E^{n+1}$ as follows:

$$h_f(x, t) = f(x, t) \qquad \text{for } \epsilon \le t \le 1 - \epsilon,$$

$$= \frac{t}{\epsilon} f(x, t) + \left(1 - \frac{t}{\epsilon}\right) g(x, t) \qquad \text{for } 0 \le t \le \epsilon,$$

$$= \frac{1 - t}{\epsilon} f(x, t) + \frac{t - 1 + \epsilon}{\epsilon} g(x, t) \qquad \text{for } 1 - \epsilon \le t \le 1.$$

Now we can repeat the arguments from the proof of Theorem (3.1).

4. *n*-dimensional case, $n \ge 2$. Let S^n be the unit sphere of Euclidean space $E^{n+1} = E^n \times E^1$, and let $g: S^n \to S^n$ be given by

$$\begin{split} g(x,\,t) &= (s\cdot x,\,2t+1) &\quad \text{for } -1 \leq t \leq 0 \quad \text{and} \quad s = \frac{1-(2t+1)^2}{\mid x\mid}, \\ &= (s\cdot \varphi(x),\,1-2\,\min(t,\,1-t)) \\ &\quad \text{for } 0 \leq t \leq 1 \quad \text{and} \quad s = 1-4(t-\frac{1}{2})^2 \end{split}$$

where $\varphi: S^{n-1} \to S^{n-1}$ is a mapping of order $\neq 0$, 1. It is easy to see that ord g=1 i.e. that g is homotopic to the identity mapping. But there does not exist a pseudo-isotopy for g i.e. such a homotopy $F: S^n \times I \to E^{n+1}$ that $F \mid S^n \times \{t\}$ is a homeomorphism for $0 \leq t < 1$ and that F(x, 1) = g(x) for every $x \in S^n$. Furthermore, let

$$P_1 = \{(x, t) \in S^n : t \ge \frac{1}{2}\}, \qquad P_2 = \{(x, t) \in S^n : |t| \le \frac{1}{2}\}$$

and $g_i = g \mid P_i$ for i = 1, 2. We denote also by $p: E^{n+1} \rightarrow E^n$ the projection given by p(x, t) = x. Then the following lemmas hold; these are the consequences of the result of §3.

- (4.1) LEMMA. If $|\operatorname{ord} \varphi| > 1$ then there does not exist a sequence of homeomorphic embeddings $f_n: P_1 \to E^{n+1}$ which is uniformly convergent to $g_1 | P_1$.
- (4.2) LEMMA. If $|\operatorname{ord} \varphi 1| > 1$ then there does not exist a sequence of homeomorphic embeddings $f_n: P_2 \to E^{n+1}$ which is uniformly convergent to $g_2 \mid P_2$.
- (4.3) COROLLARY. For every $n \ge 2$ there exists a mapping $g: S^n \to S^n$ $\subseteq E^{n+1}$ of order 1, that is not isotopically dominated by a homeomorphic embedding.

REFERENCES

- K. Borsuk, Theory of retracts, Monografie Mat., Tom 44, PWN, Warsaw, 1967.
 MR 35 #7306.
- 2. W. Holsztyński and S. Iliadis, Approximation of multi-valued by single-valued mappings and some applications, Bull. Polon. Acad. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 765-769. MR 39 #929.

University of Michigan, Ann Arbor, Michigan 48104.