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SUSPENDING HOMOTOPY 3-SPHERES AND
EMBEDDING MAPPING CYLINDERS IN S4

R. C. LACHER

Abstract. A property of maps between closed 3-manifolds, im-

plied by cellularity and implying UV°, is that the mapping

cylinder embed locally in S4. It is not clear what topological prop-

erties are preserved under such maps. In the present note, we

show that a closed 3-manifold admits such a map onto S3 if and

only if its suspension is S*.

In [ó], it was shown that if / is a map of the closed 3-manifold M

onto itself such that the mapping cylinder Z¡ of/ embeds in S*, then

Z/^MX[0, l]. The situation with regard to maps between (possi-

bly) different manifolds was unclear, and the following question was

asked: If / is a mapping of the closed 3-manifold M onto S3 such

that Zf embeds in S*, must M be homeomorphic to S3?

Notation. If f'.X—>Y is a map, Z¡ denotes its mapping cylinder

(with X and Y identified as subsets of Z¡, as usual). 2(X) denotes

the suspension of X, and "~" means topological equivalence. 7

denotes the interval [0, l].

Theorem 1. Let M and N be closed 3-manifolds, f:M—*N an onto

map. If Zf embeds (locally) in Si, then~S(M) ~Ii(N).

Proof. Let V be an open set in TV, U=f~1(V), such that Z¡ \a

embeds in Si. Using the arguments in [ó], we see that V is locally

collared in Z¡ \n.

(Sketch of proof. A result of Wilder [8] shows that Z¡ w is lcK mod

V, so/ is wi/°°-trivial; applying Wright [9], we obtain a locally finite

subset 7" of V such that each/_1(y) is cellular in U, yE V—F; then,

by a result of Armentrout [l], it follows that V is locally collared in

Zf \u at each point of V—F; finally, a result of Kirby [4] shows that

V is locally collared in Zf \u at each point of F.) Thus, AT is locally

collared in Z¡.

An engulfing-monotone union argument now shows that Zf

-M~NX(0, 1] and hence that MX(0, l)~Zf-M-N~NX(0, 1)
(see [5, Theorem 1.1 ]). For compact X, 2(X) is homeomorphic to

the 2-point compactification of ÍX(0, 1), so the proof is complete.
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Theorem 2. If M is a closed 3-manifold such that 2(M) ~54, then

there exists a mapf of M onto S3 such that Zf embeds in S4.

Proof. Let Mo be the complement of an open 3-simplex of M,

and let / be a map of M onto S3 whose only nondegenerate point-

inverse is M0. We will show that Z¡ embeds in the cone M * v.

Yet g:MXl—*MXI be an embedding such that g(x, 0)=(x, 0)

and g(xXI)E(xXl) for all x in 212", and such that g(xXl)=xXl if

and only if xEM0. Yetq:MXl^>Z} be the quotient map (whose only

nondegenerate point-inverse is M0Xl) and \etp:MXI—*M * v be the

map which shrinks MX 1 to the vertex v. Define h by

h = pgq-1 :Z/—> M * v.

One can easily check that h is a well-defined, continuous, one-one

function.

Corollary. The following are equivalent statements about a closed

3-manifold M.
(a) There exists a map f of M onto S3 such that Z¡ embeds in S4;

(b)2(M)«S4.

Remark 1. If J12"4 is a closed manifold homotopy equivalent to S4,

it is known that 2(Af4) «S6 (see Hirsch [3] and Harley [2]). More-

over, Siebenmann [7] has recently shown that 22(M3)«S6 for any

homotopy 3-sphere M3. Thus, if Mm is any (closed manifold) homo-

topy ra-sphere, k>0, and k+m^i, then ~Zk(Mm) «Sm+*. The case

k = l, m = 3, is lacking a solution.

Remark 2. The above proofs can easily be modified to yield the

following results. If f'.M—>N is an onto map between closed 3-mani-

folds such that Z¡ embeds locally in S4 then M is homeomorphic to

the connected sum NfH, where H is a closed 3-manifold and 2(22)

~Si. Conversely, if M = N#H where 2V and H are closed 3-manifolds

and 2(22) ~S4, then there exists a map of M onto N whose mapping

cylinder is a topological manifold with boundary M\JN.
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