
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 27, Number 3. March 1971

THE ORTHOMODULAR IDENTITY AND METRIC
COMPLETENESS OF THE COORDINATIZING

DIVISION RING

RONALD P. MORASH

Abstract. Let F be any division subring of the real quaternions

H. Let h(F) denote the linear space of all square summable se-

quences from Fand let L denote the lattice of all "_L-closed" sub-

spaces of h(F), where "_L" denotes the orthogonality relation de-

rived from the if-valued form (a, b) — /!<1i a;6; where a, bÇzli(F),

o = (a,;i = l, 2, • • • ) and & = (&,-; * = 1, 2, • • • ). Then L is com-

plete, orthocomplemented, M-symmetric, irreducible, atomistic,

and separable, but L is orthomodular if and only if F is either the

reals, the complex numbers, or the quaternions.

The lattice of all closed subspaces of infinite-dimensional, separa-

ble, complex Hubert space has these seven lattice-theoretic proper-

ties:

(i) complete [l, p. 6];

(ii) orthocomplemented [l, p. 52], [2, p. 42];

(iii) atomistic (Every element is the join of the atoms beneath it.)

[3, p. 48];
(iv) irreducible (The center consists precisely of 0 and 1.) [l, p.

67], [3, p. 27];
(v) separable (An orthogonal family of atoms has at most count-

ably many elements.) and infinite dimensional [3, p. 58];

(vi) M-symmetric (If a, bEL, we write aMb if x^b implies

x\/(aAb) =(x\/a)/\b. L is M-symmetric if aMb implies bMa.) [l,

p. 82], [3, p. 2];
(vii) orthomodular (If a, bEL and a¿b, then b = aV(bf\a').)

[l,p. 53], [2, p. 42].
Real and quaternionic Hubert space have the same properties.

The question arises whether these are the only three lattices (up to

ortho-isomorphism) having them. The problem underlying this

question is one of coordinatization, that is, the realization of an

abstract lattice, described only by algebraic properties, as a lattice

associated in some natural way with a concrete object, for example,

the lattice of projections of Hubert space. Work towards a coordina-

tization theorem for lattices with the above properties has been done
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by MacLaren [4], [5] and Zierler [ó]. The former showed that if L

has properties (i) through (vi) and if dim L^4, then L is ortho-iso-

morphic to the lattice of closed subspaces of a semi-inner-product

space over some division ring D. Our question is whether the assump-

tion (vii) is enough to force D to be either the reals, the complex

numbers, or the quaternions. An answer of "yes" would characterize

completely, in terms of lattice-theoretic properties, projection

lattices of Hubert space and would thus be of great importance in

the study of the logical foundations of quantum mechanics [7, p. 71 ].

We present here some evidence in support of the possibility of an

affirmative answer. Let F be any division subring of the real qua-

ternions H. We denote by \x\ =(a2-\-b2-r-c2+d2)112 the norm and by

x=a — bi — cj — dk the conjugate of x=a-r-bi-\-cj-\-dkEH. The map

x—*x is an involutory anti-automorphism of H. Consider /2(F), the

linear space of square-summable (with respect to the above norm)

sequences from F. Define a definite, Hermitian, conjugate-bilinear

"form" on l2(F), ( , ):l2(F) Xh(F)^H, by the rule (x, y) = IXi xn%,

where x, yEh(F), x = (xn; n = l, 2, ■ ■ •) and y = (yn; n — 1, ■ ■ ■).

Note that this form is ü-valued, but not necessarily F-valued. For

each subset M of k(F), define M± = (yEh(F):(x, y)=0 for each

xEM). Call a subspace 5 of /2(F) closed in case S = S±A-. The map

S—tS-11- of the lattice L of all subspaces of l2(F) into itself is a closure

operator [8, p. 1518] and so the lattice L of all closed subspaces is

complete and orthocomplemented. It is also easily seen that this lat-

tice is irreducible, atomistic, and separable. However:

Theorem. L is orthomodular if and only if F = R, C, or H.

Proof. Only the "only if" part of the theorem needs proof. We

give the proof for the case FQR only (that is, FÇLR and L ortho-

modular imply F = R). The proofs of the other two cases (that is,

FQC, but F £R and FQH, but F %Q follow from the fact that
sequential convergence in C or H can be characterized in terms of

coordinate-wise convergence in R. Choose y ER- We shall show that,

if L is orthomodular, then necessarily yEF. Let x0 = l and let x„

= n/2", re = l, 2, 3, • • • . Let x = (xn; n = 0, 1, ■ ■ • ). Let z0

be the greatest integer less than or equal to Y^Cn-o*«- Let

z = (z„; w=0, 1, • ■ • ) where .Ziz2 • • • is the binary expansion of

yJln-oX2, — zo. Thus J^Li z„/2n =7X^-0 x2n — zo. Let y0 = 2o and let

yn=zn/n for n = l, 2, ■ ■ ■ . Let y = (yn; n=0, 1, • • • ). Letting a

= sp(x) and b=sp(y), a and b are distinct atoms in L so that, by

orthomodularity, c = (a\Jb)/\aL?i0 [3, p. 291]. Necessarily, c is an

atom so that c = sp(rx+y) for some tEF. But c^ax so that (rx-\-y)
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-Le, that ¡s,

Hence,

o = X) (tx« + yn)xn = T^2xn + X x*y*-
n-0 n-0 n-0

r   =   —   X Xnyn   /    ¿2 *n   =  ( ~ Z0  —   2Z Z«/2" )(   X *» )
n-0 '       n-0 \ n-1 / \ n-0        /

= - y ( zZ x» ) / 12 xn = - y-
\ n=0       / '        n-0

Since tEF, we may conclude yEF, as desired.

Added in proof. The fact that (aVi)Aöx^0 for distinct atoms

a, b also follows from If-symmetry, so the theorem remains valid if

we replace "orthomodular" by "Af-symmetric." Hence, this L is

orthomodular if and only if it is Jlf-symmetric. It follows also that

the closure operation M-^M-*-*- is Mackey [8, p. 1518] only when

F = R, C,orH.
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