THE ORTHOMODULAR IDENTITY AND METRIC COMPLETENESS OF THE COORDINATIZING DIVISION RING

RONALD P. MORASH

ABSTRACT. Let F be any division subring of the real quaternions H. Let $l_2(F)$ denote the linear space of all square summable sequences from F and let L denote the lattice of all " \bot -closed" subspaces of $l_2(F)$, where " \bot " denotes the orthogonality relation derived from the H-valued form $(a, b) = \sum_{i=1}^{\infty} a_i \bar{b}_i$ where $a, b \in l_2(F)$, $a = (a_i; i=1, 2, \cdots)$ and $b = (b_i; i=1, 2, \cdots)$. Then L is complete, orthocomplemented, M-symmetric, irreducible, atomistic, and separable, but L is orthomodular if and only if F is either the reals, the complex numbers, or the quaternions.

The lattice of all closed subspaces of infinite-dimensional, separable, complex Hilbert space has these seven lattice-theoretic properties:

- (i) complete [1, p. 6];
- (ii) orthocomplemented [1, p. 52], [2, p. 42];
- (iii) atomistic (Every element is the join of the atoms beneath it.) [3, p. 48];
- (iv) irreducible (The center consists precisely of 0 and 1.) [1, p. 67], [3, p. 27];
- (v) separable (An orthogonal family of atoms has at most countably many elements.) and infinite dimensional [3, p. 58];
- (vi) M-symmetric (If $a, b \in L$, we write aMb if $x \le b$ implies $x \lor (a \land b) = (x \lor a) \land b$. L is M-symmetric if aMb implies bMa.) [1, p. 82], [3, p. 2];
- (vii) orthomodular (If a, $b \in L$ and $a \le b$, then $b = a \lor (b \land a')$.) [1, p. 53], [2, p. 42].

Real and quaternionic Hilbert space have the same properties. The question arises whether these are the only three lattices (up to ortho-isomorphism) having them. The problem underlying this question is one of coordinatization, that is, the realization of an abstract lattice, described only by algebraic properties, as a lattice associated in some natural way with a concrete object, for example, the lattice of projections of Hilbert space. Work towards a coordinatization theorem for lattices with the above properties has been done

Received by the editors May 4, 1970.

AMS 1969 subject classifications. Primary 0640; Secondary 8106.

Key words and phrases. Orthomodular lattices, coordinatization.

by MacLaren [4], [5] and Zierler [6]. The former showed that if L has properties (i) through (vi) and if dim $L \ge 4$, then L is ortho-isomorphic to the lattice of closed subspaces of a semi-inner-product space over some division ring D. Our question is whether the assumption (vii) is enough to force D to be either the reals, the complex numbers, or the quaternions. An answer of "yes" would characterize completely, in terms of lattice-theoretic properties, projection lattices of Hilbert space and would thus be of great importance in the study of the logical foundations of quantum mechanics [7, p. 71]. We present here some evidence in support of the possibility of an affirmative answer. Let F be any division subring of the real quaternions H. We denote by $|x| = (a^2+b^2+c^2+d^2)^{1/2}$ the norm and by $\bar{x} = a - bi - cj - dk$ the conjugate of $x = a + bi + cj + dk \in H$. The map $x \rightarrow \bar{x}$ is an involutory anti-automorphism of H. Consider $l_2(F)$, the linear space of square-summable (with respect to the above norm) sequences from F. Define a definite, Hermitian, conjugate-bilinear "form" on $l_2(F)$, $(\cdot,\cdot): l_2(F) \times l_2(F) \to H$, by the rule $(x,y) = \sum_{n=1}^{\infty} x_n \bar{y}_n$, where $x, y \in l_2(F)$, $x = (x_n; n = 1, 2, \cdots)$ and $y = (y_n; n = 1, \cdots)$. Note that this form is H-valued, but not necessarily F-valued. For each subset M of $l_2(F)$, define $M^{\perp} = (y \in l_2(F) : (x, y) = 0$ for each $x \in M$). Call a subspace S of $l_2(F)$ closed in case $S = S^{\perp \perp}$. The map $S \rightarrow S^{\perp \perp}$ of the lattice \overline{L} of all subspaces of $l_2(F)$ into itself is a closure operator [8, p. 1518] and so the lattice L of all closed subspaces is complete and orthocomplemented. It is also easily seen that this lattice is irreducible, atomistic, and separable. However:

THEOREM. L is orthomodular if and only if F = R, C, or H.

PROOF. Only the "only if" part of the theorem needs proof. We give the proof for the case $F \subseteq R$ only (that is, $F \subseteq R$ and L orthomodular imply F = R). The proofs of the other two cases (that is, $F \subseteq C$, but $F \subseteq R$ and $F \subseteq H$, but $F \subseteq C$) follow from the fact that sequential convergence in C or C can be characterized in terms of coordinate-wise convergence in C. Choose C can be shall show that, if C is orthomodular, then necessarily C can be the greatest integer less than or equal to C can be the greatest integer less than or equal to C can be the greatest integer less than or equal to C can be the greatest integer less than or equal to C can be C can be the greatest integer less than or equal to C can be C can b

 $\perp x$, that is,

$$0 = \sum_{n=0}^{\infty} (\tau x_n + y_n) x_n = \tau \sum_{n=0}^{\infty} x_n^2 + \sum_{n=0}^{\infty} x_n y_n.$$

Hence,

$$\tau = -\sum_{n=0}^{\infty} x_n y_n / \sum_{n=0}^{\infty} x_n^2 = \left(-z_0 - \sum_{n=1}^{\infty} z_n / 2^n\right) \left(\sum_{n=0}^{\infty} x_n^2\right)^{-1}$$
$$= -\gamma \left(\sum_{n=0}^{\infty} x_n^2\right) / \sum_{n=0}^{\infty} x_n^2 = -\gamma.$$

Since $\tau \in F$, we may conclude $\gamma \in F$, as desired.

ADDED IN PROOF. The fact that $(a \lor b) \land a^{\perp} \neq 0$ for distinct atoms a, b also follows from M-symmetry, so the theorem remains valid if we replace "orthomodular" by "M-symmetric." Hence, this L is orthomodular if and only if it is M-symmetric. It follows also that the closure operation $M \rightarrow M^{\perp \perp}$ is Mackey [8, p. 1518] only when F = R, C, or H.

REFERENCES

- 1. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1967. MR 37 #2638.
- 2. S. S. Holland, Jr., The current interest in orthomodular lattices, Trends in Lattice Theory, Van Nostrand, Princeton, N. J., 1969.
- 3. S. Maeda, *Theory of symmetric lattices*, University of Massachusetts, Amherst, Mass., 1968 (lecture notes—unpublished).
- 4. M. D. MacLaren, Atomic orthocomplemented lattices, Pacific J. Math. 14 (1964), 597-612. MR 29 #1159.
- 5. ——, Notes on axioms for quantum mechanics, Argonne National Lab. Report ANL 7065, July 1965.
- 6. N. Zierler, Axioms for non-relativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169. MR 25 #4385.
- 7. G. W. Mackey, Mathematical foundations of quantum mechanics: A lecture-note volume, Benjamin, New York, 1963. MR 27 #5501.
- 8. S. S. Holland, Jr., Partial solution to Mackey's problem about modular pairs and completeness, Canad. J. Math. 21 (1969), 1518-1525.

University of Massachusetts, Amherst, Massachusetts 01002