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ON A PARTITION THEOREM OF MacMAHON-ANDREWS

M. V. SUBBARAO

Abstract. Two theorems are given about partitions in which

the multiplicity of the parts satisfies certain conditions. One of these

theorems generalizes a recent result of Andrews concerning parti-

tions in which a part with an odd multiplicity occurs at least 2r+l

times.

Recently, George Andrews [l] proved the following partition

theorem, generalizing an earlier result of MacMahon [2, p. 54]

(which deals with the case r = 1) :

The number of partitions of n, in which a part occurring an odd

number of times occurs at least (2r + l) times, equals the number of

partitions of n into parts which are either even or else =2r +1

(mod 4r+2).

We wish to remark that Andrews' theorem is itself a special case

of the following result.

Theorem (A). Let k be any integer >1 and I any positive integer

páO (mod k). Let Akii(n) be the number partitions of n in which the

multiplicity of each part is either =0 (mod k) or else ïtl and =1 (mod

k). Let Bk,i(n) denote the number of partitions of n in which the parts

are either =0 (mod k) or else = Z (mod 21). Then AkA(n) =Bkj(n).

Andrews' result corresponds to the choice k = 2, l = 2r-\-l. The

proof of this is analogous to that of Andrews' and is therefore

omitted.

It is possible to obtain several results of this kind. As a sample, we

give the following:

Theorem B. Let m>l, r^O be integers, and let Cm,r(n) be the num-

ber of partitions of n such that all even multiplicities of the parts are

less than 2m, and all odd multiplicities are at least 2r + l and at most

2(m-\-r)—l. Let Dm,r(n) be the number of partitions of n into parts

which are either odd and =2r-\-l (mod 4r + 2), or even and ^0

(mod 2m). Then Cm,r(n)=Dm,T(n).
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Proof.
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where we used a well-known Euler identity [2, pp. 10-11], to trans-

form the last product in (1) into the last product in (2). This com-

pletes the proof.

The above two theorems can of course be restated using, for the

definitions of Ak,i(n), Bk,i(n), Cm,r(n) and Dm,r(n), the conjugates of

the concerned partitions.

As a particularly interesting special case of the last theorem, we

obtain, on taking m = 2, r = \, the following:

Corollary. The number of partitions of n, in which each part occurs

two, three or five times, equals the number of partitions of n into parts

which are of the forms 2 (mod 4) or 3 (mod 6).
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