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AN OPERATOR VALUED FUNCTION SPACE INTEGRAL:
A SEQUEL TO CAMERON AND STORVICK'S PAPER

G. W. JOHNSON AND D. L. SKOUG

Abstract. Recently Cameron and Storvick introduced and

studied an operator valued function space integral related to the

Feynman integral. The main theorems of their study establish the

existence of the function space integral as a weak operator limit of

operators defined at the first stage by finite-dimensional integrals.

This paper provides a substantial strengthening of their existence

theorem giving the function space integrals as strong operator

limits rather than as weak operator limits.

1. Introduction. The function space integral referred to in the title

was first defined and studied in [l]. The study of this integral has

been continued in [2], [S], and [?]. We assume familiarity with [l]

and adopt the notation and terminology of that paper. The basic

definitions may also be found in [5]. In connection with Theorems 4

through 7 of [l ], we are able to replace the weak operator limits in the

conclusion with strong operator limits. The major difficulty occurs

when the parameter X is pure imaginary. Here the argument we give

is an adaptation of an argument of Nelson [6, p. 335-336] ; the crucial

step is establishing a Poisson representation for the operators I\(F)

(ReX>0) in terms of the boundary values Iq(F).

One effect of the present paper is to show that the Cameron-

Storvick approach [l] to the Feynman integral and the Nelson ap-

proach [6] are somewhat more closely related than they previously

appeared to be; now in both approaches, strong operator limits can be

used at each stage in obtaining the Feynman integral.

Hopefully, having the Jq(F) as strong operator limits rather than

as weak operator limits as in [l] will facilitate the study of the prop-

erties of Jq(F) and its relationship with F. The finite-dimensional

integrals that appear in the first stage of the definition of Jq(F) are

relatively concrete analytic objects; they define operators on

L¿(— °°, °°) which are the composition of a finite number of multi-

plication and convolution operators. The results of this paper

strengthen the tie between Jq(F) and these relatively simple oper-

ators.
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2. The existence theorems. We will first establish the strong

convergence for positive X.

Theorem 1. Let 6(t, u) be continuous almost everywhere on R

= [a, b]X(— °°, co); let Re 6(t, u)^B on R; and let 6(t, u) be bounded

on every compact subset of R. Let F(x) =exp[/*ö(s, a:(s))d.s]. Then for

X>0,1{(F)—*I\(F) in the strong operator topology as norm <r—»0.

Proof. Let X>0 and \pEL2 = L2(— <*>, co) be given. It suffices to

show that I%"(F)\¡/—*I\(F)\{/ in L2 norm for any sequence {am} of

partitions such that norm <rm—>0. To get this result, it suffices to show

that /£,"(.F)i/'—>ix(.F)i/' almost everywhere and that the sequence

{l{m(F)¡¡/} of L2 functions is dominated by an L2 function g. The

first of these facts is established in [l, p. 526]. Next note that for any

partition a'.a = to<k< ■ ■ ■ <t„ = b, we have

Ictowöl
JOO /»   00

-oo * -oo

'exP \ Z  I      ÖC> »/-i)ó7 — X(i>i — Vj^i)2/2(tj — /y_i)> dvi ■ ■ ■ dvn
( j-i J iy_, ;

-g eB(^)X«/2[(27r)»(/i - a) ■ ■ ■ (tn - ¿B-i)]-1/2

/oo /» oo / re "\

•(»)• J      | *(».) |   exp |- E Xfo - v^i)2/2(lj - ti_i)\

dvi • • ■ dvn

/OC

I t(vn) |  exp[-\(vn - 02/2(ô - a)]dvn
-oo

= «({)

where i>o=£- But gEL2 by Lemma 1 of [l].    Q.E.D.

For X£EC+= {X:Re X>0), we will follow the notation of [l] and

[5] and let h(F) denote the common value of I?(F) and If?(F)

when both exist. We are now ready to give the strengthened version

of Theorem 4 of [l]. The existence of I\(F) below is insured by that

theorem.

Theorem 2. Let 6 and F be as in Theorem 1 above and let X£C+.

Then I{(F)—*I\(F)  in the strong operator topology as norm <r—>0.

Proof. Let ipEL2. Again it suffices to consider a sequence {crm}

of partitions such that norm am—*0. Note the following:
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(a) Ilm(F)\P is holomorphic forXGC+ [l, p. 533].

(b) ||iï"(W|| ú\\\p\\eB^ [1, Lemma 6].
(c) ForX>0, ||2^(P)^-/x(P)^|H0.
Our result now follows from the Vitali Theorem for vector-valued

functions [4, Theorem 3.14.1].    Q.E.D.

Next we give the main theorem of this paper: the strengthened

version of Theorem 5 of [l].

Theorem 3. Again let 6 and F be as in Theorem 1 above. Then there

exists a null subset A of ( — w, a>) containing 0 and such that for all

qEA, Jq(F) is the strong operator limit of I\(F) as \—>—iq along a hori-

zontal line in C+; that is, limp-.0+ \\lP-iq(F)\J/ — Jq(F)ip\\ =0 for every

qEA and every \pEL2.

Proof. Let ypEL2. By Theorem 5 of [l], for almost all

qE(- », oo), Iv_{q(FW-+Jç(F)il' weakly as £->0+. Further ||/3(P)^||

g||¿||eS(4-o). Now for \EC+, h(F)\[/ is weakly measurable in X

[4, Definition 3.5.4] since I\(F)\¡/ is analytic in X. Hence Jq(F)\pis

a weakly measurable function of q. Since L2 is separable, it follows

that Jq(F)\p is strongly measurable [4, Corollary 2, p. 73]. Then it also

follows that || Iq(F)TJ/\\ is a measurable function of g [4, Theorem 3.5.2].

Also for each X=x-yi"GC+, g(q) = (-rr-lx/[x2 + (y-q)2])Jq(F)\{/ is

Bochner integrable since by [4, Theorem 3.7.4]

/CO /%  00\\g(q)\\dqúU\\eB^  I     tt~1x/[x2 + (y - q)2]dq = \\í\\eB^.
-00 J -00

Next we wish to establish the Poisson formula

(1) /_*<*)# =   f    Or-Vi** + (V- q)2])Iq(F)Wq-

Since both sides of (1) are in L2, it suffices to show that we get

equality when we take the inner product of the two sides with an

arbitrary 4>EL2. But by [4, Theorem 3.7.12 and following comment]

we have

( JXg(q)dq, A= jX (*-Vry + (y - q)2])(Jq(F)t, <p)dq.

Finally this last expression equals (Iz-vi(F)il/, d>) by the classical

sealer-valued Poisson representation [3, p. 455]. Using (1) and [4,

Theorem 3.7.6] we have for every \ = x—yiEC+,
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(2) \\l^i(F)4 á   f " 0r-V[*2 + (y~ qy])\\JÁF)í\\dq.

Now using the fact that ||/s(P)i/'|| is a real-valued bounded, mea-

surable function of q and [3, Lemma 19.2.1], we have for almost all

yE(-<x>, »),

(3) lim   f " (tt-V[*2 + (y- q)*])\\jt(F)4,\\dq = ||/„(F)*||.

Thus by (2) and (3), we have for almost all yE(— °° , co),

(4) lim sup||/^4(F)*|| £\\J,(F)4.

By enlarging the null set if necessary we can also insure that

I,-yi(F)\¡/-*Jy(F)4f ■ weakly as x->0+. But then || Jv(F)ip\\ g

lim inf».»o+||i*-»t(PW'||.   Putting this together with   (4),  we  have

um p^mtW = \\uf)4-

This last equality and the weak convergence imply the convergence

in norm of Ix-yi(F)yp to Jv(F)\p.

The null set in the construction above may well depend upon \p,

and we would like to eliminate this feature. Let {tyn} be a countable

dense subset of L2 and obtain a null set An as above for each n. Let

A be the union of the ^4n's. Using the fact that the operators h(F)

and Iq(F) are bounded by eB(b~a), one may show without much diffi-

culty that A has the properties referred to in the conclusion of the

theorem.    Q.E.D.

We finish by giving the strengthened forms of Theorems 6 and 7

of [l]. We again have strong operator limits in the conclusion rather

than weak operator limits. The proof will not be included as it fol-

lows almost word for word the proofs above except that the bound

eB(b-a) on tjie operators is replaced by Zn-o | an\ [M(b—a)]n.

Theorem 4. Let 6(t, u) be continuous almost everywhere on R and let

16(t, u)\ ^ M on R; let G(z) = Z"=o arfin be a function which is analytic

in a disk centered at the origin of radius greater then M(b — a). Let

F(x)=G(fad(s, x(s))ds). Then the conclusions of Theorems 1, 2 and 3

above hold.
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