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A CHARACTERIZATION OF BIMEASURABLE
FUNCTIONS IN TERMS OF UNIVERSALLY
MEASURABLE SETS!

R. B. DARST

ABsTrACT. The purpose of this note is to show, assuming the
continuum hypothesis, that a Borel function, f, mapping a Borel
subset, Dy, of a separable complete metric space, M), into a sepa-
rable complete metric space, M:, maps Borel subsets of Dy onto
Borel subsets of M; if, and only if, f maps universally measurable
subsets of Dy onto universally measurable subsets of M.

Let us begin with some notation and terminology.

Denote by ®; and ®, the sets of Borel subsets of M; and M,.

The statement that a function, ¢, is a Borel function from M; to M,
means that the domain, Dy, of ¢ is an element of ®; and ¢~1(®,)
={¢~(B); BE®;} C®iNDy={BNDy; BE®,} = {BER:; BCDy} :
inverse images of Borel sets are Borel sets.

A Borel function, ¢, from M; to M, is said to be bimeasurable if
¢(®1MN\Dy) C®.: images of Borel sets are also Borel sets.

A subset E of a separable metric space, M, is said to be universally
measurable if the inner measure u (E) is equal to the outer measure
w*(E) for every probability measure, u, defined on the Borel subsets
of M.

Denote by U and U, the sets of universally measurable subsets of
M, and M..

The main result of this note can now be stated as follows.

THEOREM. A ssuming the continuum hypothesis,
f(&l N Dj) C ®. <=>f(‘u.1 N D/) C Us,.

We shall need to employ the continuum hypothesis only in the last
step of our argument. If the need to assume it for that step could be
circumvented, a much better result would be obtained.
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Before beginning a proof of the theorem, let us recall [4, §§38-39]
that Borel functions map Borel sets onto analytic sets and [7,
p. 50] analytic sets are universally measurable, so we always have
f(®:NDy) CUs. Also, recall that a probability measure, u, on the
Borel subsets of a separable metric space, M, has a unique extension
to the set of universally measurable subsets of M. We shall consider u
to be so extended. This extension is denoted, without ambiguity, by
u; thus u is defined on the analytic subsets of M.

It is well known that if f is an injection, then f maps Borel sets
onto Borel sets (e.g. [4, Vol. I, p. 489]). A theorem of Lusin [5, pp.
237-252] shows that if the inverse image, f~1(y), of each point y in M,
is a countable subset of M3, then f maps Borel sets onto Borel sets.
Hence it becomes necessary to look at the set of points y& M, for
which f~1(y) is uncountable, so let

Uu(f) = {y € M, f~(y) is uncountable}.

If U(f) is a countable set, then it is easy to see that f maps Borel sets
onto Borel sets. Moreover, if U(f) is countable, then we showed in
[2] that f maps universally measurable sets into universally mea-
surable sets. Thus, it remains to consider the case where U(f) is
uncountable. If we extend f by making it constant on the Borel set
M,— Dy, we do not change the countability of U(f), so we can assume
that .D/ = M,.

Roger Purves showed [6] that if U(f) is uncountable, then f(®:)
( ®;. Purves’ paper is the basis for our argument, and we shall often
refer to it.

At this point, let us recall a bit of recent history. In [1], I showed
that if the continuum hypothesis is satisfied, then there exists a real
valued continuous function, ¢, of bounded variation defined on the
interval I = [0, 1] such that ¢ maps a universally measurable set onto
a set which is not Lebesgue measurable. I have recently constructed
an infinitely differentiable (C*), real valued function ¥ defined on I
such that U(@) is uncountable. Thus C* functions need not map
Borel sets onto Borel sets. Moreover, if the continuum hypothesis is
assumed, the theorem of this paper implies that C* functions need not
map universally measurable sets onto universally measurable sets.

Turning now to a proof of our asserted result, assume that U(f) is
uncountable. Then [4, Vol. I, p. 498] U(f) is an uncountable analytic
set.

Purves introduced the notion of similarity of Borel maps g and &
and showed that if g and £ are similar, then g maps Borel sets onto
Borel sets < & maps Borel sets onto Borel sets. We shall recall a
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definition of similarity and then establish an analagous proposition
for universally measurable sets.

Borel maps g and & from Borel subsets G and H of separable com-
plete metric spaces M! and M? to separable complete metric spaces
M? and M* are said to be simzilar if there exists a one to one Borel
map, ¢, of G onto H such that g(x) =g(y)=k(p(x)) =h(d®»)).

(1) If g and hare similar, then

gUIN G) C U hu N H) C U

ProoF oF (1). Since similarity is easily seen to be an equivalence
relation, for our purpose it is sufficient to suppose that g is similar to &
and show that the additional supposition g(U'N\G)CU? implies
r(WNH)Cu% To this end, suppose that ECU*\H. Because ¢
establishes one to one correspondence between ®'\G and ®*\H
which extends to a one to one correspondence between UG and
WNH, ¢~Y(E)EUNG which implies that T =gogp~}(E)EUS. De-
fine ¥ by ¢(H) =go¢p—'oh~1(H), so that ¢ establishes a one to one
correspondence between the sets @, and @, of analytic subsets of the
ranges, k(H) and g(G), of & and g and Yy ~*(gop~*(E)) =h(E). Let X be
the extension to U* of a probability measure on ®%, and let u be the
probability measure defined on @, by u(B) =A¥~1(B)). Since T €U?,
there are elements 4 and B of @, such that ACTCB and u(4)
=u(B). Hence ¢ (A)CYXT)=h(E)YTY(B) and AY~'(4))
=\@~1(B)), which imply that A(E) €U

Proposition 5 of [6] tells us that there is a Borel subset F of M; such
that the restriction, f | F, of f to F is similar to a continuous function g,
defined on the standard Cantor set, C, to M, whose range is un-
countable and coincides with U(g). We have shown that we can
dispense with f and deal with g.

Proposition 4 of [6] tells us that there is a Borel subset G of C such
that the restriction, k, of g to G satisfies

(i) h~1(y) is a perfect subset of C for all yER(G),

(ii) A(G) is uncountable.

For our purposes it is necessary to have the following stronger
proposition.

(2) Thereis a closed subset G of C such that the restriction, k, of g to G
satisfies

(1) B~'(y) is a perfect subset of C for all yER(G),

(ii) &(G) is uncountable.

ProoF oF (2). Denote by 2¢, the compact metric space of closed
nonempty subsets of C (cf. [4, Vol. II, §§42-43]). Let V=g(C) and
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S = {(», K) € V X 2¢; K is a nonempty perfect subset of g~1(»)}.

Purves showed that S is a Borel set. Since g(C) = U(g) and uncount-
able analytic sets contain nonempty perfect sets, the projection,
7(S), of S on its first coordinate is V. Purves showed that there is a
compact subset D of S such that (D) is uncountable. Then he used a
selection theorem from Bourbaki to get his Borel set. We shall con-
struct a Cantor set, W, in D such that 1r| W is a homeomorphism:
Let »; and »; be distinct condensation points of w(D). Let 3¢ be the
distance, |v1—7z|, between »; and »,. Denote the compact, disjoint
strips {(v, K)ED; |v—»:| e} by A Each 4; has a finite covering
comprised of compact rectangles 4;;= {VE V; Iv—v;[ _S_el} X Sij,
where the diameter of each S;jis <2¢. Since w(4;) is uncountable,
w(4;j,) is uncountable for some A4 ;;; which we denote by D,. Iterate
this process to obtain a Cantor set W such that #(W) is an un-
countable compact subset of V, and B,= {K €2¢; (v, K)EW} con-
tains exactly one point, Q(»), for all v&Ex(W). The function »—Q(»)
is continuous on the compact set w(W) and W is its graph. Set H
={xEC; gx) Ex(W)} =g~ (x(W)); H is compact since w(W) is
compact. Set G= {xEH; xEQ(g(x)) } Recall that Q(g(x)) is a non-
empty perfect subset of g~!(g(x)). If v&Ew (W), then GNg(v) =g,
and if vEx (W), then GNg~*(») = Q). It remains to show that G is
compact. The map x—Q(g(x)) is continuous on H, so the map ¥:x
—(x, Q(g(x))), is continuous on H. Hence Y(H) is compact. Also,
notice that the set ¥={(x, K)ECX2¢, x€K} is closed in CX2°.
Therefore G =y~ (Y (H)NV¥) is compact, and our proof of (2) is com-
pleted.

Since k(G) is an uncountable analytic set, #(G) contains a Cantor
set, C1. Using a similarity map, we can take C; to be C. Moreover,
h~1(Cy) is a compact subset of G and £~(C,) is perfect because A~'(y)
is perfect for every y&h(G). Another similarity then permits us to
take £~1(C1) to be C, so we obtain the following proposition which
summarizes our progress thus far.

(3) If U(f) is uncountable, then there is a Borel subset F of the domain
of f such that the restriction, f | F, of f to F is similar to a conlinuous
map, h, of C onto C satisfying

(1) h~'(y) is a perfect subset of C for all yEC.

Because the domain of % is compact, rather than merely a Borel set,
a hard argument of Purves can be extended easily to establish the
following proposition.

(4) There exists a Borel map, s, of C onto C such that s|h='(y) is a
one to one Borel map of h='(y) onto C, for each y&C.
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Purves proves (4) only under the assumption that A is continuous
and bimeasurable (i.e., A(®MNC) C®). But, he needs the assumption
that & be bimeasurable only at one point in his argument: He needs to
assume that # maps relatively compact subsets of its domain onto
Borel sets. In our case, the domain of % is compact, so relatively com-
pact subsets of Dj are compact and, hence, mapped by % onto com-
pact sets.

Denote s~1(0) by K. Then K is an uncountable Borel set. For each
xE C, let 7(x) be the element of the one element set A~ (h(x)) K :7(x)
is the element of A~1(k(x)) which is mapped by s|A~1(k(x)) onto zero.
As Purves notes, if B is a Borel set in C, r~1(B) = {x&C; f(x) =f(y) for
some yEBNK } =f-1(f(BNK)). The latter set is analytic. Likewise
r~1(C— B) is analytic, so r~1(B) is Borel. Thus, 7 is a Borel map of C
onto K and the restriction of 7 to K is the identity. Hence, the map

T:x—(r(x), s(x)), =«€C,

is a one to one Borel map of C onto K X C. Moreover, T establishes a
similarity between % and the projection map

pi(u, v) > u, (u,v) €K X C.

Because of (1) our purpose is attained by showing that p(Ua) Us,
where U, denotes the universally measurable subsets of K X C and U,
denotes the universally measurable subsets of K. To this end, let us
begin by recalling that a universal null set, NV, in K XC is a subset of
K X C satisfying u*(N) =0 for each nonatomic probability measure,
u, on the Borel subsets of K X C. Remember that subsets of universal
null sets are universal null sets and universal null sets are universally
measurable. Suppose that there exists a universal null set, V, in K X C
satisfying (V) =K. (We have been unable to establish the existence
of such a set, N, without assuming the continuum hypothesis.) Let S
be a subset of K which is not universally measurable and let E
=NNp~1(S). Then EE€U, and p(E) =S&EU;. It remains to assume
the continuum hypothesis and establish the existence of N. Assume
the continuum hypothesis. Let { ;l,a}a<n and {xa }a<ﬂ be well orderings
of the nonatomic probability measures on the Borel subsets of K XC
and the elements of K such that each a has countably many pre-
decessors. For each a there exists a first category F, subset, F¢, of C
such that p.(K X F¥) =1: Look at the probability measure induced on
the Borel subsets, B, of C by restricting u. to sets of the form K XB.
Pick y. € [C—UggoF#] and let N =Uacq(¥a, ¥a)-

Since N intersects each set K X F2 in a countable set and u, is non-
atomic, pe(N) =0, a<Q. A proof of our theorem is completed
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We conclude with a brief resume:

(a) Purves showed f(®,) C®y< U(f) is countable.

(b) [2]showed U(f) countable =f(Uy) CU,.

(c) [3]showed 3fEC= D U({) is uncountable.

(d) (4) showed U(f) uncountable =3FE®, D f| F is similar to a
continuous map, A, of C onto C such that A~(y) is perfect for each
yel.

(e¢) The Theorem showed U(f) uncountable and the continuum
hypothesis =f(U) CU.
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