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A CHARACTERIZATION OF BIMEASURABLE
FUNCTIONS IN TERMS OF UNIVERSALLY

MEASURABLE SETS1

R. B. DARST

Abstract. The purpose of this note is to show, assuming the

continuum hypothesis, that a Borel function, /, mapping a Borel

subset, Df, of a separable complete metric space, Mi, into a sepa-

rable complete metric space, Mi, maps Borel subsets of Df onto

Borel subsets of M¡ if, and only if, / maps universally measurable

subsets of Df onto universally measurable subsets of Mi.

Let us begin with some notation and terminology.

Denote by (Bi and <S>2 the sets of Borel subsets of M\ and M2.

The statement that a function, <p, is a Borel function from Mi to M2

means that the domain, D$, of <p is an element of <$>i and <p~~l(<$>2)

= {4>-l(B);BE<S,i}E<S>ir\D^= {Br\D^;BE<S,i} = {BE<$>i; BED*} :

inverse images of Borel sets are Borel sets.

A Borel function, <f>, from Mi to M2 is said to be bimeasurable if

(¡>((S>ir\D^) ES>2: images of Borel sets are also Borel sets.

A subset E of a separable metric space, M, is said to be universally

measurable if the inner measure pt(E) is equal to the outer measure

p*(E) for every probability measure, p, defined on the Borel subsets

of M.
Denote by lii and lU the sets of universally measurable subsets of

Mi and M2.

The main result of this note can now be stated as follows.

Theorem. Assuming the continuum hypothesis,

/(«! n Df) e (B2 ̂/(nii r\ d¡) c %+

We shall need to employ the continuum hypothesis only in the last

step of our argument. If the need to assume it for that step could be

circumvented, a much better result would be obtained.

Received by the editors April 18, 1970.
AMS 1969 subject classifications. Primary 0440, 2635, 2810, 2813, 2825, 2865;

Secondary 0265, 0274, 2680, 2840.
Key words and phrases. Bimeasurable function, Borel function, Borel set, con-

tinuum hypothesis, infinitely differentiable function, probability measure, separable

complete metric space, universally measurable function, universally measurable set,

universal null set.

1 This research was supported in part by the National Science Foundation under

grant GP 9470.

Copyright © 1971, American Mathematical Society

566



A CHARACTERIZATION OF BIMEASURABLE FUNCTIONS 567

Before beginning a proof of the theorem, let us recall [4, §§38-39]

that Borel functions map Borel sets onto analytic sets and [7,

p. 50] analytic sets are universally measurable, so we always have

f(<Rir\Df) E'M.i. Also, recall that a probability measure, p, on the

Borel subsets of a separable metric space, M, has a unique extension

to the set of universally measurable subsets of M. We shall consider p

to be so extended. This extension is denoted, without ambiguity, by

p; thus p is defined on the analytic subsets of M.

It is well known that if/ is an injection, then / maps Borel sets

onto Borel sets (e.g. [4, Vol. I, p. 489]). A theorem of Lusin [5, pp.

237-252] shows that if the inverse image,/-1(y), of each point y in M2

is a countable subset of Mi, then / maps Borel sets onto Borel sets.

Hence it becomes necessary to look at the set of points yEM2 lor

which /-1(y) is uncountable, so let

U(f) = {y G M2;f~1(y) is uncountable}.

If U(f) is a countable set, then it is easy to see that/ maps Borel sets

onto Borel sets. Moreover, if U(f) is countable, then we showed in

[2 ] that / maps universally measurable sets into universally mea-

surable sets. Thus, it remains to consider the case where U(f) is

uncountable. If we extend/ by making it constant on the Borel set

Mi — Df, we do not change the countability of U(f), so we can assume

that Df = Mi.
Roger Purves showed [6] that if U(f) is uncountable, then f((S>i)

<X.<$>2- Purves' paper is the basis for our argument, and we shall often

refer to it.

At this point, let us recall a bit of recent history. In [l], I showed

that if the continuum hypothesis is satisfied, then there exists a real

valued continuous function, <f>, of bounded variation defined on the

interval 7= [0, 1 ] such that <p maps a universally measurable set onto

a set which is not Lebesgue measurable. I have recently constructed

an infinitely differentiable (C°°), real valued function \p defined on 7

such that U(\p) is uncountable. Thus Cx functions need not map

Borel sets onto Borel sets. Moreover, if the continuum hypothesis is

assumed, the theorem of this paper implies that C°° functions need not

map universally measurable sets onto universally measurable sets.

Turning now to a proof of our asserted result, assume that U(f) is

uncountable. Then [4, Vol. I, p. 498] U(f) is an uncountable analytic

set.

Purves introduced the notion of similarity of Borel maps g and h

and showed that if g and h are similar, then g maps Borel sets onto

Borel sets <=> h maps Borel sets onto Borel sets. We shall recall a
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definition of similarity and then establish an analagous proposition

for universally measurable sets.

Borel maps g and h from Borel subsets G and H of separable com-

plete metric spaces Ml and M2 to separable complete metric spaces

Mz and Af4 are said to be similar if there exists a one to one Borel

map, <j>, of G onto H such that g(x) =g(y)^h(<b(x)) = h(<p(y)).

(1) If g and h are similar, then

gCu1 r\ G) c cu3 « ¿Cu2 n 27) c m4.

Proof of (1). Since similarity is easily seen to be an equivalence

relation, for our purpose it is sufficient to suppose that g is similar to h

and show that the additional supposition g(cti.ir\G)Ecü* implies

Ä(cU2r\r7)CcU.4. To this end, suppose that EEWt^H. Because d>

establishes one to one correspondence between 03 lC\ G and ($>2i\H

which extends to a one to one correspondence between ^PiG and

•M2r\H, d>-l(E)EcViir^G which implies that P = go0-1(E)GcU3. De-

fine \p by \f/(H)=gO(p~1oh~1(H), so that \p establishes a one to one

correspondence between the sets t\g and Û/, of analytic subsets of the

ranges, h(H) and g(G), of h and g and \l/~1(go<p-1(E)) =h(E). Let X be

the extension to 114 of a probability measure on (B4, and let p be the

probability measure defined on ös by p(B) =X(^~1(P))- Since PGIt3.

there are elements A and B oí Q,a such that ^4CPCP and p(A)

=p(B). Hence }p-1(A)E^~1(T)=h(E)E^-1(B) and Mt'KA))
=X(^-1(P)), which imply that h(E) Git4.

Proposition 5 of [6] tells us that there is a Borel subset Pof Mi such

that the restriction,/! F, of/ to F is similar to a continuous function g,

defined on the standard Cantor set, C, to M2, whose range is un-

countable and coincides with U(g). We have shown that we can

dispense with/and deal with g.

Proposition 4 of [6 ] tells us that there is a Borel subset G of C such

that the restriction, h, oí g to G satisfies

(i) A_1(y) is a perfect subset of C for all yEh(G),

(ii) h(G) is uncountable.

For our purposes it is necessary to have the following stronger

proposition.

(2) There is a closed subset G of C such that the restriction, h, of g to G

satisfies
(i) A_1(y) is a perfect subset of Cfor all yEh(G),
(ii) h(G) is uncountable.

Proof of (2). Denote by 2C, the compact metric space of closed

nonempty subsets of C (cf. [4, Vol. II, §§42-43]). Let V=g(C) and
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S = {(v, K) E V X 2e; K is a nonempty perfect subset of g-1^)} •

Purves showed that 5 is a Borel set. Since g(C) = U(g) and uncount-

able analytic sets contain nonempty perfect sets, the projection,

ir(S), of S on its first coordinate is V. Purves showed that there is a

compact subset D of S such that 7r(7>) is uncountable. Then he used a

selection theorem from Bourbaki to get his Borel set. We shall con-

struct a Cantor set, W, in D such that 7r | W is a homeomorphism :

Let vi and v2 be distinct condensation points of ir(D). Let 3et be the

distance, \vi — v2\, between vi and v2. Denote the compact, disjoint

strips {(v, K)ED; \v—Vi\ á«i} by Ai. Each At has a finite covering

comprised of compact rectangles An= {vEV; \v—Vi\ s^ei} XSn,

where the diameter of each Sn is =2ei. Since tt(AÍ) is uncountable,

ir(Aai) is uncountable for some Ayt which we denote by 7?,-. Iterate

this process to obtain a Cantor set W such that w(W) is an un-

countable compact subset of V, and B„= {KE2C; (v, K)ew} con-

tains exactly one point, Q(v), for all ve^(W). The function v—>Q(v)

is continuous on the compact set ir(W) and W is its graph. Set 77

= {xEC; g(x)Etr(W)} =g~1(ir(W))\ 77 is compact since tt(W) is

compact. Set G= }xG77; xEQ(g(x))}. Recall that Q(g(x)) is a non-

empty perfect subset of g-1(g(x)). If vQt(W), then GC\g~1(v)=0,

and if vEtt(W), then Gi^g"1^) =Q(v). It remains to show that G is

compact. The map x—*Q(g(x)) is continuous on 77, so the map ib'.x

—*(x, Q(g(x))), is continuous on ¿7. Hence $(H) is compact. Also,

notice that the set ^={(x, K)ECX2C, xEK} is closed in CX2".

Therefore G =\p~1(\¡/(H)r\<Í!) is compact, and our proof of (2) is com-

pleted.

Since h(G) is an uncountable analytic set, h(G) contains a Cantor

set, Ci. Using a similarity map, we can take Ci to be C. Moreover,

h~1(Ci) is a compact subset of G and A_1(Ci) is perfect because h~1(y)

is perfect for every yEh(G). Another similarity then permits us to

take Â_l(Ci) to be C, so we obtain the following proposition which

summarizes our progress thus far.

(3) If U(f) is uncountable, then there is a Borel subset F of the domain

of f such that the restriction, f\ F, of f to F is similar to a continuous

map, h,of C onto C satisfying

(i) hr1 (y) is a perfect subset of Cfor all y EC.

Because the domain of h is compact, rather than merely a Borel set,

a hard argument of Purves can be extended easily to establish the

following proposition.

(4) There exists a Borel map, s, of C onto C such that s\h~x(y) is a

one to one Borel map of h_1(y) onto C,for each y EC.



570 R. B. DARST [March

Purves proves (4) only under the assumption that h is continuous

and bimeasurable (i.e., &(03OC)Cû3). But, he needs the assumption

that h be bimeasurable only at one point in his argument: He needs to

assume that h maps relatively compact subsets of its domain onto

Borel sets. In our case, the domain of h is compact, so relatively com-

pact subsets of Dn are compact and, hence, mapped by h onto com-

pact sets.

Denote s-1(0) by K. Then K is an uncountable Borel set. For each

xEC, let r(x) be the element of the one element set hrl(h(x))C\K:r(x)

is the element of hrl(h(x)) which is mapped by s\h~l (h(x)) onto zero.

As Purves notes, if B is a Borel set in C, r~l(B) = {xEC;f(x) =f(y) for

some yEBC\K} =f~1(f(Bi~\K)). The latter set is analytic. Likewise

r~x(C—B) is analytic, so r~l(B) is Borel. Thus, r is a Borel map of C

onto K and the restriction of r to K is the identity. Hence, the map

T:x —> (r(x), s(x)),       x EC,

is a one to one Borel map of C onto KXC. Moreover, T establishes a

similarity between h and the projection map

p: (u, v) —» m,        (u, v) E K X C.

Because of (1) our purpose is attained by showing that ^(lOíllf»

where IL, denotes the universally measurable subsets oi KXC and Its

denotes the universally measurable subsets of K. To this end, let us

begin by recalling that a universal null set, N, in KXC is a subset of

KXC satisfying p*(N) =0 for each nonatomic probability measure,

p, on the Borel subsets oí KXC. Remember that subsets of universal

null sets are universal null sets and universal null sets are universally

measurable. Suppose that there exists a universal null set, N, in KXC

satisfying p(N) =K. (We have been unable to establish the existence

of such a set, N, without assuming the continuum hypothesis.) Let 5

be a subset of K which is not universally measurable and let E

= Nr\p~l(S). Then EGU. and p(E) = SG<U¡,. It remains to assume

the continuum hypothesis and establish the existence of N. Assume

the continuum hypothesis. Let {jua}a<aand {xa}a<n be well orderings

of the nonatomic probability measures on the Borel subsets oí KXC

and the elements of K such that each a has countably many pre-

decessors. For each a there exists a first category F, subset, Fa, oí C

such that pa(K X F") = 1 : Look at the probability measure induced on

the Borel subsets, B, of C by restricting pa to sets of the form KXB.

Pick yaE [C-\JßsaFt>] and let 2V = Ua<n(xa, ya).

Since N intersects each set K X F" in a countable set and pa is non-

atomic, Pa(N) =0, a<ü. A proof of our theorem is completed
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We conclude with a brief resume:

(a) Purves showed/((Bi) C®2<=> U(f) is countable.

(b) [2 ] showed U(f) countable =*fC\Li) Clk-
(c) [3] showed 3/GC°° 3 U(f) is uncountable.

(d) (4) showed U(f) uncountable =>3FG(Bi 3f\F is similar to a

continuous map, h, of C onto C such that h~1(y) is perfect for each

yGC.
(e) The Theorem showed U(f) uncountable and the continuum

hypothesis =>/('U)CtcU.
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