THE ARENS PRODUCT AND DUALITY IN B^* -ALGEBRAS. II

PAK-KEN WONG

ABSTRACT. Let A be a commutative B^* -algebra, Φ its carrier space and A^* the conjugate space of A. Let A' be the closed subspace of A^* spanned by Φ . We show that A is a dual algebra if and only if $A' = A^*$ and for each $x \in A$, the mapping $T_x: f \to f *x$ is a weakly completely continuous operator on A^* . This improves an early result by B. J. Tomiuk and the author. A similar result holds for general B^* -algebras.

1. Notation and preliminaries. Notation and definitions not explicitly given are taken from [7].

Let A be a Banach algebra and A^* its conjugate space. For each $x \in A$ and $f \in A^*$, define

$$(f * x)(y) = f(xy) \qquad (y \in A).$$

Then $f * x \in A^*$. Let T_x be the operator from A^* into itself given by

$$T_x(f) = f * x \qquad (f \in A^*).$$

The mapping T_x is called weakly completely continuous on A^* if for every bounded net $\{f_i\} \subset A^*$, there exist a subnet $\{f_k\} \subset \{f_i\}$ and an element $f \in A^*$ such that $T_x(f_k) \to T_x(f)$ weakly; i.e.,

$$F(f * x) = \lim_{k} F(f_k * x)$$

for all $F \in A^{**}$, where A^{**} denotes the second conjugate space of A. In this paper, all algebras and spaces under consideration are over the complex field C.

- 2. Lemmas. Let A be a B^* -algebra. It is well known that A is Arens regular and A^{**} is a B^* -algebra under the Arens product * (see [1, p. 869, Theorem 7.1]).
- LEMMA 2.1. Let A be a B*-algebra and π the canonical mapping of A into A**. Then A is a dual algebra if and only if $\pi(A)$ is a closed two-sided ideal of A**.

Proof. This is Theorem 5.1 in [7].

Received by the editors March 6, 1970.

AMS 1969 subject classifications. Primary 4650; Secondary 4655.

Key words and phrases. Dual B*-algebra, Arens product, Arens regular, carrier space, weakly completely continuous operators, selfadjoint minimal idempotents.

Copyright @ 1971, American Mathematical Society

LEMMA 2.2. Let A be a dual B*-algebra. For each $x \in A$, the mapping $T_x: f \rightarrow f * x$ is weakly completely continuous on A^* .

PROOF. Let $\{f_t\}$ be a net in A^* such that $||f_t|| \le 1$. By Alaoglu's theorem [2, p. 424, Theorem V.4.2], there exist a subnet $\{f_k\}$ of $\{f_t\}$ and a linear functional $f \in A^*$ such that

$$f(y) = \lim_{k} f_k(y) \quad (y \in A).$$

Let $x \in A$ and $F \in A^{**}$. Since A is a dual algebra, by Lemma 2.1, $\pi(x) * F \in \pi(A)$ and therefore

$$F(f * x) = (\pi(x) * F)(f) = f(\pi(x) * F)$$

$$= \lim_{k} f_{k}(\pi(x) * F)$$

$$= \lim_{k} F(f_{k} * x).$$

Hence T_x is a weakly completely continuous operator on A^* . This completes the proof.

3. A characterization of commutative dual B^* -algebras. In this section, A will denote a commutative B^* -algebra and Φ its carrier space. Let A' be the closed subspace of A^* spanned by Φ .

LEMMA 3.1. If A is a dual commutative B^* -algebra, then we have $A' = A^*$.

PROOF. Let $x \in A$ and $f \in A^*$. Since A is a dual algebra, the carrier space Φ of A is discrete. For each $\varphi \in \Phi$, let e_{φ} be the element of A corresponding to the characteristic function of φ . By the proof of $[4, p. 21, Theorem 6], <math>\{e_{\varphi}: \varphi \in \Phi\}$ is a maximal orthogonal family of selfadjoint minimal idempotents in A such that

$$x = \sum_{\infty} e_{\varphi} x = \sum_{\infty} k_{\varphi} e_{\varphi},$$

where $k_{\varphi} \in C$. Hence there exists only a countable number of $k_{\varphi} \neq 0$; say $k_{\varphi 1}, k_{\varphi 2}, \cdots$. Let

$$x_n = \sum_{i=1}^n k_{\varphi_i} e_{\varphi_i} \qquad (n = 1, 2, \cdots).$$

Then we can write $x = \lim_{n \to \infty} x_n$. Since

$$e_{\varphi}y = e_{\varphi}ye_{\varphi} = \varphi(y)e_{\varphi}$$

for all $y \in A$, we have $f * e_{\varphi} = f(e_{\varphi}) \varphi(\varphi \in \Phi)$. It now follows that $f * x_n \in A'$. Since $f * x = \lim_{n \to \infty} f * x_n$, $f * x \in A'$.

Suppose $A' \neq A^*$. Then there exists a nonzero linear functional $F \in A^{**}$ such that F(A') = (0). Therefore

(#)
$$(\pi(x) * F)(f) = F(f * x) = 0,$$

for all $f \in A^*$ and $x \in A$. Let $G \in A^{**}$. By Goldstine's theorem [2, p. 424, Theorem V.4.5], there exists a net $\{x_t\} \subset A$ such that $\pi(x_t) \to G$ weakly in A^{**} . Thus $\pi(x_t) * F \to G * F$ weakly in A^{**} . Since by (#), $\pi(x_t) * F = 0$ for all t, we have G * F = 0. Hence $A^{**} * F = (0)$. Since A^{**} is a B^* -algebra, it now follows that F = 0. This is a contradiction. Therefore $A' = A^*$.

THEOREM 3.2. Let A be a commutative B*-algebra. Then the following statements are equivalent:

- (i) A is a dual algebra.
- (ii) $A' = A^*$ and for each $x \in A$, the mapping $T_x: f \rightarrow f *x$ is weakly completely continuous on A^* .

PROOF. (i) \Rightarrow (ii). This follows from Lemma 2.2 and Lemma 3.1. (ii) \Rightarrow (i). Suppose (ii) holds. Let $F \in A^{**}$ and $x \in A$. By Goldstine's theorem, there exists a net $\{x_t\} \subset A$ such that $\pi(x_t) \to F$ weakly. Let $\varphi \in \Phi$ and let $\{\varphi_p\} \subset \Phi$ be a net converging to φ in Φ . Since T_x is a weakly completely continuous operator and since $\{\varphi_p\}$ is bounded, there exist a subnet $\{\varphi_k\} \subset \{\varphi_p\}$ and an element $g \in A^*$ such that

$$G(g*x) = \lim_{k \to \infty} G(\varphi_k * x) \qquad (G \in A^{**}).$$

Therefore we have

$$(\pi(x) * F)(\varphi) = \lim_{t} \varphi(xx_t) = \lim_{t} \lim_{t} \varphi_k(xx_t)$$

$$= \lim_{t} \lim_{t} \pi(x_t)(\varphi_k * x) = \lim_{t} \pi(x_t)(g * x)$$

$$= F(g * x) = \lim_{t} F(\varphi_k * x) = \lim_{t} (\pi(x) * F)(\varphi_k).$$

This shows that $(\pi(x)*F)|\Phi$ is a continuous function on Φ , where $(\pi(x)*F)|\Phi$ denotes the restriction of $\pi(x)*F$ to Φ . Clearly $(\pi(x)*F)|\Phi$ vanishes at infinity on Φ . If $\pi(x)*F\neq 0$, it follows from $A'=A^*$ that $(\pi(x)*F)|\Phi\neq 0$. Since A is a commutative B^* -algebra, we conclude that $\pi(x)*F\in \pi(A)$ for all $x\in A$ and $F\in A^{**}$. Therefore $\pi(A)$ is an ideal of A^{**} and so by Lemma 2.1, A is a dual algebra. This completes the proof of the theorem.

REMARK. Let A be a dual commutative B^* -algebra. Then by the preceding theorem, $A'' = A^{**}$, where $A'' = A'^*$. Therefore the state-

ments (5) and (6) of Theorem 4.2 in [7] coincide. In this case, the products o and * of Theorem 4.2 in [7] also coincide on A^{**} .

4. Duality in general B^* -algebras.

LEMMA 4.1. Let A be a Banach algebra and B a closed subalgebra of A. Let $x \in B$, $f \in A^*$ and $g \in B^*$. If the mapping $f \to f *x$ is weakly completely continuous on A^* , then the mapping $g \to g *x$ is weakly completely continuous on B^* .

PROOF. This is clear.

Let A be a B^* -algebra. It is well known that A is a dual algebra if and only if every maximal commutative *-subalgebra of A is dual (see [5, p. 179, Theorem 1]). Now by using Lemma 2.2, Theorem 3.2 and Lemma 4.1, we can easily prove the following result:

THEOREM 4.2. Let A be a B*-algebra. Then A is a dual algebra if and only if the following conditions are satisfied:

- (a) for every $x \in A$, the mapping $T_x: f \to f *x$ is weakly completely continuous on A^* ;
 - (b) for every maximal commutative *-subalgebra B of A, $B' = B^*$.

REFERENCES

- 1. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622.
- 2. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
 - 3. I. Kaplansky, Dual rings, Ann. of Math. (2) 49 (1948), 689-701. MR 10, 7.
- 4. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1954), 15-36. MR 16, 1126.
- 5. ——, A characterization of dual B*-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 179–182. MR 16, 1126.
- 6. C. E. Rickart, General theory of Banach algebra, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
- 7. B. J. Tomiuk and P. K. Wong, The Arens product and duality in B*-algebras, Proc. Amer. Math. Soc. 25 (1970), 529-535.

University of Ottawa, Ottawa, Canada