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A PRODUCT INTEGRAL REPRESENTATION
FOR AN EVOLUTION SYSTEM

J. V. HEROD

ABsTrACT. This paper provides a product integral representa-
tion for a nonlinear evolution system. The representation is valid
for expansive systems and provides an analysis in the nonexpansive
case which is different from ones previously discovered.

In [7], D. Rutledge obtains a product integral representation for a
nonexpansive, nonlinear semigroup. In [6], Neuberger gets such a
representation for expansive semigroups by first considering non-
expansive evolution systems. This paper obtains a product integral
representation for an expansive evolution system M. In this develop-
ment, it is not required that lims.oh=![M(h, 0)—1]P exist. As a
corollary to Theorem 3, a statement equivalent to the statement that
M is nonexpansive is found.

Suppose that {G, +, | | } is a complete, normed, Abelian group
and that S'is the set of real numbers. If f is a function from S to G and
a>b, then denote the range of the restriction of f to [, a] by f([b, a]).
Also, the statement that {s,}5 is a subdivision of {a, b} means thats
is a decreasing sequence with s(0) =a and s(n) =b. The statement that
t is a refinement of the subdivision s means that ¢ is a subdivision of
{a, b} and that there is an increasing sequence « so that s(p) =#(u(p))
for 1 =p =<n. Finally, if { f»}tis a sequence of functions from G to G
and gisin G, then

[pI_If] @ = Al - 1ol

An evolution system on G is a function M with domain contained in
SXSso thatif x =y then M(x, y) is a function from G to G having the
following properties:

(1) if x=y=2z then M(x, y) M(y, 2) = M(x, z) and M(x, x) =1, the
identity function on G, and

(2) if t is a number and P is in G then the function g given by g(x)
= M(x, t) P, for all x =¢, is continuous.
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In order to obtain a product integral representation for the evolu-
tion system M, two additional conditions are used:

(3) there is an increasing, continuous function 8 and a subset D of
G so that

(a) if Pisin D and x>y then M(x, y)Pisin D, and

(b) if Pisin D, €>0,a>b, and Qisin M([b, a], b)P then thereis a
positive number § so that if R is in M([b, a], b))P, |Q—R| <3, and a
=x=y=b, then

| [M(x, 5) — 1]R — [M(x, 5) — 1]Q| = [exp(8(x) — B(»)) — 1]-¢,

and

(4) there is a nondecreasing, continuous function « so that if x>y
and exp(a(x) —a(y)) <2, then 2— M (x, y) has range all of G and, if P
and Q arein G, then

[2 — exp(a(®) — a())]- | P — Q| '
= |2 - M 9]P - [2 - M ]|
REMARK. It follows from condition (4) that if exp(a(x) —a(y)) <2,
then [2— M(x, y) |~ has domain all of G, and if P and Q are in G then
[[2 = M(x, »]P — [2 — M(z, »)]0|
= [2 — exp(a(®) — <D} P~ Q] .

In this paper, the following three theorems are proved.

THEOREM 1. Suppose that P is in D, a>b, and M satisfies conditions
(1)-(4). It follows that M(a, b)P =J]?[2—M]-"P—in the sense that
if €>0, then there is a subdivision s of {a, b} so that if {t,}3 is a refine-
ment of s then

M(@a, )P — [1[2— M@ty t,)]|"'P| <e.
=1

THEOREM 2. Suppose that M satisfies conditions (1)-(4), if x>y
then M(x, y) is continuous from G lo G, D is dense in G, a>b, and P is
in G, it follows that M(a, b)P =] [?[2— M]-'P.

THEOREM 3. Suppose that G is a Banach space, M satisfies condi-
tions (1)-(3). If x>y then M(x, y) is continuous from G to G, D 1is
dense in G, and p is a continuous, real valued function which is of
bounded variation on each interval. These are equivalent:

(a) If x>yand P and Q arein G then

| M(x, y)P — M(z, »)Q| = exp(p(x) — p(»)-| P — Q] .
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(b) If x>y and exp(p(x) —p(y)) <2, then 2 — M(x, y) kas range all of
G and, if P and Q arein G, then

[2 — exp(o(x) — p(»)]- | P — Q|
< |2 - Mz, 9)]P - [2 — Mz, »)]0] .

INDICATION OF PrOOFs. The following inequality is important in
what follows; it may be established after considering the polynomial
P(2) =1—2s2+42% It is labeled Lemma 1 for later reference.

LEMMA 1. If x is a number and 1 £x < (14++/5)/2 then [2—x ] <x2

In the definitions and lemmas which follow, suppose that M
satisfies conditions (1)-(4), e >b, and €>0.

DEFINITION. Define functions & and B as follows: if P is in D and
a=z2b then d(z, P) is the largest number d not exceeding 1 so that if
Qisin M([z,a],2) P,| Q—R| <d,anda=x=y=zthen

| [M(x, 3) — 1]Q — [M(x, y) — 1]1P[i'S [exp (B(x) — B(3)) — 1] e

Also, B(z, P) is the largest number « not exceeding @ so thatif u>v>2
then | M(v, 2)P—P| <4(z, P).

REMARK. Note that the existence of & follows from condition (3)
and of B follows from condition (2).

LEMMA 2. Suppose that P isin D. If a=x=b, {t,}5 is a subdivision
of {B(x, P),x}, and j is an integer in [1, n], then

| [M (1=, 1) — 1]M (8, 1) P — [M(timr, t;) — 1]P|
‘ < [exp(B(timy) — B()) — 1]-e.

INDICATION OF PrOOF. If {f,}2 is a subdivision of {B(x, P), x} and
j is an integer in [1, #] then x <t;<B(x, P). Thus | M(t;, x)P—P|
<8(x, P). Now, M(t;, x)P is in M([x, a], x)P, so if aZu=v=x then

| [M(u,v) — 1]M (5, )P — [M(x, v) — 1]P|
< [exp(B(w) — B(W) — 1] e.

LEMMA 3. Suppose that P is in D, {t,}¢ is an increasing sequence
with values in [b, a] and limit z. There is a positive integer N so that if
n> N then B(tn, M(t., b)P) =2.

INDICATION OF PROOF. Suppose that P is in D and ¢ is an infinite
increasing sequence with values in [b, a] and limit 2. The fact that
{M (tp, b)P}:_o converges in G and has limit M(z, b)P follows from
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condition (2). Let Q be M(z, b)P. Since Q is in M([b, a], b)P, there
is a number d so that 0<d<1 and, if |R—Q|<d and R is
in M([b, a], b)P and a=x=y=b, then

| [MGx, 3)—1]0—[M(x, ) —1]R| = [exp(B(x) —B(3)) —1]-¢/2.
Let w be so that if z=2u=w then |Q—M(u, b)PI <d/4. Let n be so
that ¢,>w. First, 8§(¢,, M(¢,, b)P)=d/2 because: suppose R is in
M([ta, a], b)P and |R—M(t,, b)P| <d/2. Then |R—Q| <d so that
if a=zx=y=b then

| [M(z, 9) — 1]M(t, P — [M(x, 5) — 1]R]
< [exp(8(x) — B(») — 1]-[e/2 + ¢/2].

Finally, B(¢., M(t., b)P) =z because: suppose that ¢, Sv<z. Then

| M(v, t) M (ta, B)P — M (ta, B)P| < | M(v, ta) M (ta, b)P — Q|
+ | Q— M(tn, )P| = d/4+ /4 S 5(ta, M(ta, B) P).

LEMMA 4. Suppose that P is in D. There is a subdivision u of {a, b}
so that if {t,}4s a refinement of u and p is an integer in [1, n] then

| [M(tp1, tn) — 1]M (-1, B)P — [M(tp1, t;) — 1]M(ty, b)P|
< [exp(Bltpr) — B()) — 1]-2¢.

INDICATION OF PROOF. Suppose that P is in D. By the previous
lemma, there is a subdivision {uq o of {a, b{ so that if ¢ is an integer
in [1, m] then ug_1=B(uy M(ug b)P). Let {¢,}3 be a refinement of
and p be an integer in [1, #]. Let ¢ be an integer in [1, m] so that
Ug 1=t 1>t =ug Then | M(tp_1, b)P — M(u,, b)PI <8(uqy M(uq, b)P)
and | M(ty, b)P—M(u,, b)P| <8(ug, M(uq, b)P). Hence, if aZx2y
= u,, then

| [M(z, ) = 1M (tps, P — [M(x, 3) — 1]M (s, ) P|
< [exp(8(x) — BG)) — 1]-2¢.

INDICATION OF PROOF OF THEOREM 1. Suppose that Pisin D. Let
be a subdivision of {a, b} as indicated in Lemma 4, {s,, }I," be a refine-
ment of « so that if p is an integer in [1, m] then exp(a(sp—1) —a(s;))

<(14++/5)/2, and {t,}{,’ be a refinement of s. By Lemma 1, if p is an
integerin [1,#] and P and Q are in G, then

l [2 - M(tp—lv tp)]-IP - [2 - M(tr—-lr tp)]_lQI
< exp(2[a(ty1) — a(t)]))- | P — Q]
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ﬁ [2 - M(tp—b tp)]_lP - M(a) b)P
p=1

n n+1—j
Z{ I (2 = M(tys, 1) M (tosrs, B)P

j=1 p=1

- ﬁ [2 — My, )7 M sy ) P}‘

=1

3 exp(2la(a) — altuirs)])

j=1

o | M(tasami B)P — [2 = M(ta—y, tnt1-i) |M (tn—j, B) P |

IA

= 3 exp(2la(a) — altmiy)])

=1
| [M(taziy tasrs) — 1]M (ta_s, b) P
- [M(tn—:', tn+1—1') - I]M(tn+l—1‘a b)PI

s 3 [exp(2[a(a) = altnyss)])- [exp(Bltas) — Bllasas) — 1]-2¢

= exp(2[a(a) — a(®)]) - [exp(8(e) — B()) — 1]-2e.

To see this last inequality, one should note Lemma 2.2 of [4].

INDICATION OF PROOF OF THEOREM 2. Suppose that P and Q are in
G,a>b, and {tp}{,‘ is a subdivision of {a, b} so that, if p is an integer
in [1,#], then [2— M(t,-1, ¢,) ]-* has domain all of G.

M(a, )P — T1[2 = Mtps, t)P| 5 | M(a, )P — M (s, )]
p=1

|12 = M, 0 = T [2 — My, t,)J—IP‘
+ ﬁ [2 = M(tyy, t,)]7Q — M(a, b)QI.

Thus, if D is dense in G and M(a, b) is continuous from G to G, it
follows from Lemma 1 that M(a, b)P = J[* [2— M]-'P.

LeEMMA 5. If p is a continuous function from S to S and is of bounded
variation on each interval of S, a>b, and €>0, then there is a subdivision
sof {a, b} sothatif {t,}ais a refinement of s then
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exp(p(0) = p4) — IT [2 = exp(olty) = s} <

p=1

INDICATION OF PrOOF. Notice that if p is continuous and of bounded
variation on each interval of S, a>b, and {t,,}{,‘ is a subdivision of
{a, b} so that, if p is an integer in [1, z], then exp(p(t,—1) —p(t,)) <2
then

IT [2 - exp(a() = sC)) 5 I=I[2 —en( [ r | o] )]_

With techniques similar to those used in the proof of Theorem 1, it
can be shown that, if

-1 1++/5
exp(f [dp|>< 2\/ forp=1,2,--.,mn,
t

14

then

n

I [2 — exp(p(ts—1) — p(t:)) ]! — exp(p(a) — p(b))

p=1

b n
< exp (3 f | dp!)- > | [exp(p(ta-s) — pltns1-5)) — 1]?] .

=1

The conclusion of the lemma follows.

INDICATION OF PROOF OF THEOREM 3. Suppose that G is a Banach
space and that p is a function from S to S which is continuous and of
bounded variation on each interval of S. Suppose also that x>y and
that M(x, y) is a function from G to G having the property that if P
and Q are in G then | M(x, y)P— M(x, ) Q| <exp(p(x) —-p(y))|P—Q|
<2|P—0Q|. As in Lemma 1 of [5], let X be in G and K(Z) be
S[X+M(x, y)Z] for each Z in G. Then K is a contraction mapping
and there is only one member Z of G so that 2Z— M(x, y)Z=X. Fur-
thermore, if P and Q are in G, then

lo—P| =.5[[2— M@ »]Q—[2- M »]P|
+ .5 exp(p(x) — p(»)) | P — Q] .
Consequently, in Theorem 3, statement (a) implies statement (b).
Finally, with G and p as supposed above, if M satisfies conditions
(1)-(3), D is dense in G, statement (b) of Theorem 3 holds, and

x>y, then, by Theorem 2, M(x, y)P=.]]v [2— M]-'P for each P in
G and, by Lemma 5,
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v [2 - Ml — L TT#[2 — M]7Q| = explo(2) — p(0)) | P— Q] -

1
This completes the proof of Theorem 3.

Examples.

ExamPLE 1. Let G be a Banach space and T be a one-parameter
semigroup of nonlinear transformations on G. That is, T is a function
from [0, ) to the set of continuous transformations from G to G
which satisfies

(1) T@)T(y) =T(x+y)ifx, y20,

(2) if P is in G and g,(x) =T(x)P for all x in [0, ») then g, is
continuous and lim,.¢+ g,(x) =P,

(3) |T@x)P—T(x)Q| =|P—0Q| if x=0and P and Qarein G, and

(4) there is a dense subset D of G such that if P is in D then g, is
continuous with domain [0, «). By Theorem 2, if P isin D and x>0,
the[n]T(x)P=,H° [2—T(—dI)]-*P. Compare [5] and Theorem 2
of [7].

ExaMpLE 2. Let f be an increasing function from the real numbers
onto the real numbers so that f’ is continuous and nonincreasing.
Suppose also that g is increasing and continuous, and that, for x>y
and P a real number,

M(x, )P = f(g(x) — g(y) + f(P)).

M satisfies (1)-(4) but lim.e+ A=2[M(k, 0)—1]P may not exist.
([:o]mpare Example 2 of [8], Example 3.4 of [1], and Theorem A of
6].

ExaMPLE 3. In case M satisfies conditions (1) and (2) and if P and
Q are in G and x>y, then |[M(x, y)—1]P—[M(x, y)—1]0Q|
< [exp(B(x) —B(»)) —1]| P—Q|, then, according to [2] and [3], each
value of M has range all of G and is invertible. This paper provides an
alternate method for obtaining M (x, )~
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