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A COMMUTATIVTTY CRITERION FOR CLOSED
SUBGROUPS OF COMPACT LIE GROUPS

JOSEPH A. WOLF

Abstract. Let r be a closed subgroup of a compact Lie group

G. If the identity component T¡¡ is commutative, and if the order of

r/r0 is prime to the order of the Weyl group of G, then it is shown

that T is commutative. If G is a classical group this extends a

theorem of Burnside on finite linear groups. If G is exceptional this

gives some information on Cayley-Dickson algebras, Jordan alge-

bras and the Cayley projective plane.

Let T be a complex linear group of degree n and finite order | Y \. If

every prime divisor p of \y\ satisfies p>n, then it is both standard

and clear that the character of the representation YEGL(n, C) is a

sum of characters of degree 1, so Y is a commutative group on = n

generators. Here we extend that simple comment to a remark on

subgroups of compact connected Lie groups :

Thoerem. Let G be a compact connected Lie group and let Wo be its

Weyl group. Let Y EG be a closed subgroup such that

(i) the identity component Y o of Y is commutative, and

(ii) the orders |r/r0[ and \ Wa\ are relatively prime.

Then Y is contained in a maximal torus subgroup T of G. In par-

ticular, r is commutative and Y/Yo can be generated by ¿dim2"—dim To

elements.

The special case To = {1}, i.e. Y finite, is:

Corollary 1. Let G be a compact connected Lie group, Wo Us

Weyl group, and Y EG a finite subgroup such that the orders \Y\ and

I Wg\ are relatively prime. Then Y is contained in a maximal torus sub-

group T of G. In particular, Y is commutative on ¿dim 7" = rank G

generators.

Let it(Wq) denote the set of all prime divisors of | Wo\ ■ G is locally

isomorphic to a direct product of a torus and some simple groups Gt,

and Wo is the direct product of the Woit so Tr(WG) is the union of the

ir(Wo,)- To apply the theorem and its special case Corollary 1, now,

one must know w(Wo) when G is simple. For simple G, it is given as

follows (cf. [2, §8.10]).
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Cartan class of G % tt(Wo)

An,n^l {primes p\p%.n+\}

Bn, C„ or Dn, ra = 2 {primes p:pHkn}

G2 or P4 Í2,3}

E, {2,3,5}

E7 or E8 {2,3,5, 7}

The result mentioned at the beginning of this note is the case

r0 = {1} of part 1 of the following specialization of the theorem to

classical linear groups.

Corollary 2. Let T be a compact linear group of degree d. Suppose

that its identity component To is commutative. Let ir(r/ro) denote the set

of all prime divisors of | r/Po| •

1. If p>d for every pEir(T/To) then T is commutative and T/To can

be generated by ^d — dim To elements.

2. 7/ T has a nonsingular symmetric or antisymmetric bilinear in-

variant, and if £>max (2, [o*/2]) for every pEir(T/To), then T is

commutative and T/To can be generated by ;= [d/2]— dim T0 elements.

One also has an interesting specialization of the theorem to groups

of type G2 or P4. Here F denotes a subfield of the complex number

field C, and "compact" refers to the topology on matrices over C of

appropriate degree.

Corollary 3. Let V be a compact group, T0 commutative, and

2, 3£7r(r/r0).
1. If T is a group of automorphisms of a Cayley-Dickson algebra A

over F, then V is commutative and Y /To can be generated by ^2 —dim To

elements.

2. If T is a group of automorphisms of an exceptional simple Jordan

algebra J over F, then V is commutative and Y/Y0 can be generated by

<4—dim r0 elements.

3. If T is a group of collineations of the (real) Cayley projective plane

P, then T is commutative, Y/T0 can be generated by =4— dim To ele-

ments, and T has a fixed point on P.
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Proof of Theorem. If | Wg\ = 1 then G is a torus and the asser-

tion is vacuous. Now suppose | Wo\ >1. As Wo is generated by re-

flections it has even order, so Y/Y0 has odd order, and the Feit-

Thompson Theorem [l ] proves r/r0 solvable.

fe If r = r0 the assertion is vacuous. Now assume |r/r0| >1. As

r/r0 is solvable it has a normal subgroup A/r0 of prime index p. By

induction on | T/Tol, A is contained in a maximal torus subgroup 5 of

G.
Let Zo(A) denote the centralizer of A in G. Let K denote the iden-

tity component of Za(A). As 5 is connected, AESEZa(A) implies

AESEK. Thus K is a closed connected subgroup of maximal rank in

G, and A is central in K.

Y normalizes A, thus Zo(A), and thus normalizes K. Let yGr—A.

Now K has a maximal torus T that is stable under conjugation by y.

Note AET because A is central in K. Now Y normalizes T. Let

No(T) denote the normalizer of T in G, so YENg(T), and represent

Wo = No(T)/T. Then NG(T)—>Wq induces a homomorphism r/r0

->Wo- As |r/r0| is prime to |Wg|, the image of Y/Y0->Wa is

trivial, so rcr.Q.E.D.
Proof of Corollary 1. Let r0 = {1} in the theorem.

Proof of Corollary 2. We start with a compact group Y in the

general linear group GL(d, C), so we may conjugate and assume Y in

the unitary group U(d). The chart says ir(Wmd)) = {primes p:púd\

because U(d) is locally isomorphic to the product of the special

unitary group SU(d) (type Ad-i) and a circle group. So the hypothesis

of part 1 says that | Y/Y0\ is prime to ¡ IFr/y)!, and the assertion of

part 1 follows from the theorem.

Suppose that Y has a nonsingular bilinear invariant ß. If ß is

symmetric then YEO(d) orthogonal group. Under the hypothesis of

part 2, Y/Yo has odd order, so YESO(d). The latter is of type Bn for

d = 2n+l, type Dn for d = 2n, so we have Y EG with rank G = [d/2]

and |r/r0| prime to | Wa\. If ß is antisymmetric then rCSp(<2/2),

symplectic group which is of type Cd/2, and again Y EG with rank

G= [d/2] and | r/r0| prime to | Wa[. The assertion of part 2 now

follows from the theorem. Q.E.D.

Proof of Corollary 3. We write Aut(-) for the automorphism

group, Ac and Jc for the scalar extensions A®FC and J®pC, G2 and

Fi for the compact connected simple groups of types G2 and Fit and

G2 and Ff for their complexifications.

In part 1, rcAut(A)CAut(.Ac) =G2, and the maximal compact

subgroups of G2 are the conjugates of G2, so we may take YEG2. As
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ir(Wai)— {2, 3}   our assertion follows directly from the theorem.

In part 2, r£Aut(/)CAut(/c) =Pf, so we may assume TEF4, as

above, and the assertion follows directly from the theorem.

The collineation group of the Cayley plane P is a connected Lie

group of type E6 whose maximal compact subgroups are the con-

jugates of the elliptic group P4 of P. Thus we may take YEFi, and the

theorem says that V is contained in a maximal torus T of P4. As a

homogeneous space, P=P4/Spin(9), so P (and thus also T) has a fixed

point. Q.E.D.
Remark 1. It would be preferable to avoid use of the powerful

Feit-Thompson result [l].

Remark 2. Parts 1 and 2 of Corollary 3 remain valid when T is

finite and P is an arbitrary field of characteristic zero.
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