A COMMUTATIVITY CRITERION FOR CLOSED SUBGROUPS OF COMPACT LIE GROUPS

JOSEPH A. WOLF

ABSTRACT. Let Γ be a closed subgroup of a compact Lie group G. If the identity component Γ_0 is commutative, and if the order of Γ/Γ_0 is prime to the order of the Weyl group of G, then it is shown that Γ is commutative. If G is a classical group this extends a theorem of Burnside on finite linear groups. If G is exceptional this gives some information on Cayley-Dickson algebras, Jordan algebras and the Cayley projective plane.

Let Γ be a complex linear group of degree n and finite order $|\Gamma|$. If every prime divisor p of $|\Gamma|$ satisfies p > n, then it is both standard and clear that the character of the representation $\Gamma \subset GL(n, C)$ is a sum of characters of degree 1, so Γ is a commutative group on $\leq n$ generators. Here we extend that simple comment to a remark on subgroups of compact connected Lie groups:

THOEREM. Let G be a compact connected Lie group and let W_G be its Weyl group. Let $\Gamma \subset G$ be a closed subgroup such that

- (i) the identity component Γ_0 of Γ is commutative, and
- (ii) the orders $|\Gamma/\Gamma_0|$ and $|W_G|$ are relatively prime.

Then Γ is contained in a maximal torus subgroup T of G. In particular, Γ is commutative and Γ/Γ_0 can be generated by $\leq \dim T - \dim \Gamma_0$ elements.

The special case $\Gamma_0 = \{1\}$, i.e. Γ finite, is:

COROLLARY 1. Let G be a compact connected Lie group, W_G its Weyl group, and $\Gamma \subset G$ a finite subgroup such that the orders $|\Gamma|$ and $|W_G|$ are relatively prime. Then Γ is contained in a maximal torus subgroup T of G. In particular, Γ is commutative on $\leq \dim T = \operatorname{rank} G$ generators.

Let $\pi(W_G)$ denote the set of all prime divisors of $|W_G|$. G is locally isomorphic to a direct product of a torus and some simple groups G_i , and W_G is the direct product of the W_{G_i} , so $\pi(W_G)$ is the union of the $\pi(W_{G_i})$. To apply the theorem and its special case Corollary 1, now, one must know $\pi(W_G)$ when G is simple. For simple G, it is given as follows (cf. [2, §8.10]).

Received by the editors January 28, 1970.

AMS 1970 subject classification. Primary 22C05, 20C15; Secondary 17C40.

Key words and phrases. Lie group, closed subgroup, commutative subgroup, Weyl group, linear group, Jordan algebra.

Cartan class of G	$\pi(W_{\it G})$
$A_n, n \ge 1$	$\{\text{primes } p: p \leq n+1\}$
B_n , C_n or D_n , $n \ge 2$	$\{\text{primes } p: p \leq n\}$
G_2 or F_4	{2, 3}
E_6	{2, 3, 5}
E_7 or E_8	{2, 3, 5, 7}

The result mentioned at the beginning of this note is the case $\Gamma_0 = \{1\}$ of part 1 of the following specialization of the theorem to classical linear groups.

COROLLARY 2. Let Γ be a compact linear group of degree d. Suppose that its identity component Γ_0 is commutative. Let $\pi(\Gamma/\Gamma_0)$ denote the set of all prime divisors of $|\Gamma/\Gamma_0|$.

- 1. If p>d for every $p\in\pi(\Gamma/\Gamma_0)$ then Γ is commutative and Γ/Γ_0 can be generated by $\leq d-\dim\Gamma_0$ elements.
- 2. If Γ has a nonsingular symmetric or antisymmetric bilinear invariant, and if $p > \max(2, [d/2])$ for every $p \in \pi(\Gamma/\Gamma_0)$, then Γ is commutative and Γ/Γ_0 can be generated by $\leq [d/2] \dim \Gamma_0$ elements.

One also has an interesting specialization of the theorem to groups of type G_2 or F_4 . Here F denotes a subfield of the complex number field C, and "compact" refers to the topology on matrices over C of appropriate degree.

COROLLARY 3. Let Γ be a compact group, Γ_0 commutative, and 2, $3 \oplus \pi(\Gamma/\Gamma_0)$.

- 1. If Γ is a group of automorphisms of a Cayley-Dickson algebra A over F, then Γ is commutative and Γ/Γ_0 can be generated by $\leq 2 \dim \Gamma_0$ elements.
- 2. If Γ is a group of automorphisms of an exceptional simple Jordan algebra J over F, then Γ is commutative and Γ/Γ_0 can be generated by $\leq 4 \dim \Gamma_0$ elements.
- 3. If Γ is a group of collineations of the (real) Cayley projective plane P, then Γ is commutative, Γ/Γ_0 can be generated by $\leq 4 \dim \Gamma_0$ elements, and Γ has a fixed point on P.

PROOF OF THEOREM. If $|W_G| = 1$ then G is a torus and the assertion is vacuous. Now suppose $|W_G| > 1$. As W_G is generated by reflections it has even order, so Γ/Γ_0 has odd order, and the Feit-Thompson Theorem [1] proves Γ/Γ_0 solvable.

If $\Gamma = \Gamma_0$ the assertion is vacuous. Now assume $|\Gamma/\Gamma_0| > 1$. As Γ/Γ_0 is solvable it has a normal subgroup Δ/Γ_0 of prime index p. By induction on $|\Gamma/\Gamma_0|$, Δ is contained in a maximal torus subgroup S of G.

Let $Z_{\mathcal{G}}(\Delta)$ denote the centralizer of Δ in G. Let K denote the identity component of $Z_{\mathcal{G}}(\Delta)$. As S is connected, $\Delta \subset S \subset Z_{\mathcal{G}}(\Delta)$ implies $\Delta \subset S \subset K$. Thus K is a closed connected subgroup of maximal rank in G, and Δ is central in K.

 Γ normalizes Δ , thus $Z_G(\Delta)$, and thus normalizes K. Let $\gamma \in \Gamma - \Delta$. Now K has a maximal torus T that is stable under conjugation by γ . Note $\Delta \subset T$ because Δ is central in K. Now Γ normalizes T. Let $N_G(T)$ denote the normalizer of T in G, so $\Gamma \subset N_G(T)$, and represent $W_G = N_G(T)/T$. Then $N_G(T) \to W_G$ induces a homomorphism $\Gamma/\Gamma_0 \to W_G$. As $|\Gamma/\Gamma_0|$ is prime to $|W_G|$, the image of $\Gamma/\Gamma_0 \to W_G$ is trivial, so $\Gamma \subset T$. Q.E.D.

Proof of Corollary 1. Let $\Gamma_0 = \{1\}$ in the theorem.

PROOF OF COROLLARY 2. We start with a compact group Γ in the general linear group GL(d, C), so we may conjugate and assume Γ in the unitary group U(d). The chart says $\pi(W_{U(d)}) = \{\text{primes } p : p \leq d\}$ because U(d) is locally isomorphic to the product of the special unitary group SU(d) (type A_{d-1}) and a circle group. So the hypothesis of part 1 says that $|\Gamma/\Gamma_0|$ is prime to $|W_{U(d)}|$, and the assertion of part 1 follows from the theorem.

Suppose that Γ has a nonsingular bilinear invariant β . If β is symmetric then $\Gamma \subset O(d)$ orthogonal group. Under the hypothesis of part 2, Γ/Γ_0 has odd order, so $\Gamma \subset SO(d)$. The latter is of type B_n for d=2n+1, type D_n for d=2n, so we have $\Gamma \subset G$ with rank G=[d/2] and $|\Gamma/\Gamma_0|$ prime to $|W_G|$. If β is antisymmetric then $\Gamma \subset Sp(d/2)$, symplectic group which is of type $C_{d/2}$, and again $\Gamma \subset G$ with rank G=[d/2] and $|\Gamma/\Gamma_0|$ prime to $|W_G|$. The assertion of part 2 now follows from the theorem. Q.E.D.

PROOF OF COROLLARY 3. We write $Aut(\cdot)$ for the automorphism group, A_C and J_C for the scalar extensions $A \otimes_F C$ and $J \otimes_F C$, G_2 and F_4 for the compact connected simple groups of types G_2 and F_4 , and G_2^C and F_4^C for their complexifications.

In part 1, $\Gamma \subset \operatorname{Aut}(A) \subset \operatorname{Aut}(A_C) = G_2^C$, and the maximal compact subgroups of G_2^C are the conjugates of G_2 , so we may take $\Gamma \subset G_2$. As

622 J. A. WOLF

 $\pi(W_{G_2}) = \{2, 3\}$ our assertion follows directly from the theorem. In part 2, $\Gamma \subset \operatorname{Aut}(J) \subset \operatorname{Aut}(J_C) = F_4^C$, so we may assume $\Gamma \subset F_4$ as above, and the assertion follows directly from the theorem.

The collineation group of the Cayley plane P is a connected Lie group of type E_6 whose maximal compact subgroups are the conjugates of the elliptic group F_4 of P. Thus we may take $\Gamma \subset F_4$, and the theorem says that Γ is contained in a maximal torus T of F_4 . As a homogeneous space, $P = F_4 / \text{Spin}(9)$, so T (and thus also Γ) has a fixed point. Q.E.D.

REMARK 1. It would be preferable to avoid use of the powerful Feit-Thompson result [1].

REMARK 2. Parts 1 and 2 of Corollary 3 remain valid when Γ is finite and F is an arbitrary field of characteristic zero.

REFERENCES

- 1. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538.
- 2. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967. MR 36 #829.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903