CONVERSION OF THE PERMANENT INTO THE DETERMINANT¹

P. M. GIBSON

ABSTRACT. Let A be an n-square (0, 1)-matrix with positive permanent. It is shown that if the permanent of A can be converted into a determinant by affixing \pm signs to the elements of A then A has at most $(n^2+3n-2)/2$ positive entries. Corollaries of this result are given.

The permanent appears naturally in many combinatorial problems. Since computations with the permanent are difficult, it is of interest to find a simple method for conversion of the permanent into the determinant. Pólya [4] noted that there is no method of uniformly affixing \pm signs to the elements of the matrices of the vector space M_n , n>2, of all n-square matrices over the field F of characteristic zero so that the permanent is converted into the determinant. Marcus and Minc [2] generalized this by showing that if n>2 then there is no linear transformation $\sigma: M_n \to M_n$ such that per $A = \det \sigma(A)$ for every A in M_n . In this paper, a different improvement of Pólya's result is given. It is shown that if A is an n-square (0, 1)-matrix with positive permanent and there is a way of converting the permanent of A into a determinant by affixing \pm signs to the elements of A then A has at most $(n^2+3n-2)/2$ positive entries.

Let $A = [a_{ij}]$ be an *n*-square matrix. Let A_{ij} be the (n-1)-square submatrix of A that remains after row i and column j are removed, and let s_{ij} denote the sum of the entries in the complement of A_{ij} , i.e.,

$$s_{ij} = \sum_{k=1}^{n} a_{ik} + \sum_{m=1}^{n} a_{mj} - a_{ij}.$$

If there exists an *n*-square matrix $B = [b_{ij}]$ such that per $A = \det B$ and $b_{ij} = \pm a_{ij}$ for $i, j = 1, \dots, n$, then A is convertible. If A contains a $k \times (n-k)$ zero submatrix, for some $1 \le k \le n-1$, then A is partly decomposable; otherwise, A is fully indecomposable.

If A and B are n-square matrices, let $A \sim B$ denote that there exist

Received by the editors January 30, 1970.

AMS 1969 subject classifications. Primary 1520; Secondary 0540, 0525.

Key words and phrases. Permanents, determinants, (0, 1)-matrices, matrices over a field.

¹ This paper was presented at the Auburn University Matrix Theory Conference, June 11, 1970.

permutation matrices P and Q such that A = PBQ. Clearly, if A is convertible and $A \sim B$, then B is convertible.

Let $T_n = [t_{ij}]$ be the *n*-square (0, 1)-matrix with $t_{ij} = 0$ if and only if $1 \le i < j < n$, let $\nu(A)$ denote the number of 1's in the (0, 1)-matrix A, and let $\Omega_n = (n^2 + 3n - 2)/2$. If $A \sim T_n$, then per A > 0, $\nu(A) = \Omega_n$, and it follows from [1] that A is convertible. In this paper we prove the converse.

We shall use the following three lemmas in our proof of the primary result.

LEMMA 1. If $A = [a_{ij}]$ is an n-square convertible (0, 1)-matrix, $n \ge 2$, and $a_{km} = 1$, then A_{km} is convertible.

PROOF. Let $B = [b_{ij}]$ be an *n*-square matrix with per $A = \det B$ and $b_{ij} = \pm a_{ij}$. Expanding per A and $\det B$ by row k,

(1)
$$\sum_{j=1}^{n} a_{kj} \operatorname{per} A_{kj} = \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det B_{kj}.$$

Since $b_{ij} = \pm a_{ij}$ and $a_{ij} \ge 0$,

(2)
$$a_{kj} \operatorname{per} A_{kj} \geq (-1)^{k+j} b_{kj} \det B_{kj}, \quad j = 1, \dots, n.$$

Since $a_{km} = 1 = \pm b_{km}$, (1) and (2) imply that per $A_{km} = \pm \det B_{km}$. Hence, A_{km} is convertible.

LEMMA 2. If $A = [a_{ij}]$ is an n-square (0, 1)-matrix, $n \ge 3$, with $a_{jj} = 1$ and $\nu(A_{jj}) \le \Omega_{n-1}$ for $j = 1, \dots, n$, then

$$\min\{s_{ij} \mid 1 \leq j \leq n\} \leq n+2,$$

with equality only if

$$\nu(A) = 1 + \Omega_n.$$

Proof. Suppose that

$$(5) s_{kk} = \min\{s_{ij} \mid 1 \leq j \leq n\}.$$

Since $a_{ii} = 1$,

(6)
$$ns_{kk} \leq \sum_{j=1}^{n} s_{jj} = 2\nu(A) - n.$$

Since $\nu(A_{kk}) \leq \Omega_{n-1}$,

$$(7) \nu(A) \leq s_{kk} + \Omega_{n-1}.$$

Combining (5), (6), and (7), we have (3). Suppose that equality holds in (3). Then equality holds in (7). These two equalities imply (4).

1971]

LEMMA 3. If $A = [a_{ij}]$ is an n-square (0, 1)-matrix, $n \ge 5$, such that

$$(8) a_{ij} = 1 \Rightarrow s_{ij} \ge n+1,$$

(9)
$$(a_{ij} = 1, s_{ij} = n + 1) \Rightarrow A_{ij} \sim T_{n-1},$$

$$(10) a_{11} = 1, s_{11} = n+1,$$

$$(11) A_{11} = T_{n-1},$$

then

$$(12) A \sim T_n.$$

PROOF. Suppose that $a_{1n}+a_{n1}=0$. Since $a_{1n}=0$, (11), (8), and (9) imply that $A_{2n}\sim T_{n-1}$. Since $a_{n1}=0$, this implies that

(13)
$$a_{1j} = 1, \quad j = 1, \dots, n-1.$$

Similarly, $A_{n,n-1} \sim T_{n-1}$,

(14)
$$a_{j1} = 1, \quad j = 1, \dots, n-1.$$

From (13) and (14), $s_{11} = 2n - 3$. Since $n \ge 5$, this is a contradiction to (10). Hence, $a_{1n} + a_{n1} \ge 1$. Combining this with (11) and (8),

(15)
$$a_{1j} + a_{j1} \ge 1, \quad j = 2, \cdots, n.$$

We consider two cases.

Case (i). Let $a_{1n} + a_{n1} = 1$. Suppose that $a_{1n} = 1$, $a_{n1} = 0$. From (10) and (15),

(16)
$$a_{12} = a_{21} = 1$$
 or $a_{13} + a_{31} = 1$.

Since $a_{n1} = 0$ and $n \ge 5$, (11), (16), and (9) imply that

$$(17) a_{1,n-1} + a_{n-1,1} = 2.$$

From (10), (15), and (17), $a_{12}+a_{21}=1=a_{13}+a_{31}$. Combining this with (11) and (9), $a_{1j}=1, j=1, \cdots, n$. Combining this with (11) and (17), we have (12). If $a_{1n}=0$ and $a_{n1}=1$ a similar argument shows (12).

Case (ii). Let

$$(18) a_{1n} + a_{n1} = 2.$$

Then (10) and (15) imply that

(19)
$$a_{1j} + a_{j1} = 1, \quad j = 2, \dots, n-1.$$

If $a_{1,n-1}=1$, we can reduce this case to Case (i) by interchanging row n-1 and row n of A. Suppose that $a_{1,n-1}=0$. Then there exists $1 \le k \le n-2$ such that $a_{1k}=1$ and

(20)
$$a_{1j} = 0, \quad j = k+1, \dots, n-1.$$

We shall prove that

(21)
$$a_{1j} = 1, \quad j = 1, \dots, k.$$

Let r_j be the jth row sum of $A_{k+1,k+1}$. Suppose that $2 \le m \le k-1$ with $a_{1j} = 1, j = 1, \dots, m-1$. It is easy to show that

$$r_1 > m$$
,
 $r_j < m$, $j = 2, \dots, m-1$,
 $r_j > m$, $j = m+1, \dots, n-1$.

Hence, since $A_{k+1,k+1} \sim T_{n-1}$, we have $r_m = m$. Combining this with (11) and (19), we have $a_{1m} = 1$. This implies (21). Combining (11) with (18) through (21), we have (12).

THEOREM. If A is an n-square convertible (0, 1)-matrix with per A > 0 then

$$(22) \nu(A) \leq \Omega_n$$

with equality if and only if $A \sim T_n$.

PROOF. Clearly this statement is true for n = 1, 2, and it is easy to prove for n = 3, 4. Assume that it is true for all m < n, where $n \ge 5$, and let $A = [a_{ij}]$ be an n-square convertible (0, 1)-matrix with per A > 0. Suppose that A is partly decomposable. We may assume that

$$A = \begin{bmatrix} A_1 & 0 \\ A_3 & A_2 \end{bmatrix},$$

where A_1 is k-square, $1 \le k \le n-1$. Since A is a convertible (0, 1)-matrix and (per A_1) (per A_2) = per A > 0, A_j is a convertible (0, 1)-matrix with per $A_j > 0$, j = 1, 2. Hence, using the inductive assumption.

$$\nu(A) \leq \Omega_k + k(n-k) + \Omega_{n-k} = \Omega_n - 1.$$

This proves (22), for A partly decomposable.

Now suppose that A is fully indecomposable. We may assume that $a_{11} = 1$,

(23)
$$s_{11} = \min \{ s_{ij} | a_{ij} = 1 \}.$$

From Minc's characterization of fully indecomposable matrices [3],

(24) per
$$A_{ij} > 0$$
, $i, j = 1, \dots, n$.

Since per $A_{11} > 0$, we may assume that

(25)
$$a_{jj} = 1, \quad j = 1, \dots, n.$$

According to Lemma 1, A_{ij} is convertible. Hence, from (24) and the inductive assumption,

(26)
$$\nu(A_{jj}) \leq \Omega_{n-1}, \quad j=1, \cdots, n.$$

From (23), (25), (26), and Lemma 2,

$$(27) s_{11} \leq n+2.$$

Suppose that equality holds in (27). By Lemma 2, we have (4). Hence $\nu(A_{11}) = \Omega_{n-1}$. Hence, from Lemma 1, (24), and the inductive assumption, we have $A_{11} \sim T_{n-1}$. We may assume that

$$(28) A_{11} = T_{n-1}.$$

Since equality holds in (27), (23) and (28) imply that $s_{2n} = s_{n,n-1} = s_{jj} = n+2$, $j=2, \dots, n-1$, and therefore that $a_{1j} = a_{j1} = 1$, $j=2, \dots, n$. Since $n \ge 5$, this contradicts (27). Hence

(29)
$$s_{11} \leq n+1.$$

From (26) and (29), we have (22).

Suppose that equality holds in (22). Then A is fully indecomposable. From (26) and (29), equality must hold in (29) and $\nu(A_{11}) = \Omega_{n-1}$. Hence, by the inductive assumption, $A_{11} \sim T_{n-1}$, and we may assume (11). Since equality holds in (29), we have (8) and (10). It is easy to show (9). Hence by Lemma 3, $A \sim T_n$. The converse follows from [1].

We state three corollaries.

COROLLARY 1. If A is an n-square convertible (0, 1)-matrix, $n \ge 5$, then $\nu(A) \le n(n-1)$ with equality only if A has a zero row or a zero column.

Let M_n be the ring of all *n*-square matrices over a field F of characteristic zero. If

$$K_n \subset \{1, \cdots, n\} \times \{1, \cdots, n\},$$

let

$$\Gamma(K_n) = \{ [a_{ij}] \in M_n \mid a_{ij} = 0 \ \forall (i,j) \in K_n \},$$

and let $|K_n|$ be the cardinal number of K_n .

COROLLARY 2. If every matrix in $\Gamma(K_n)$ is convertible and per $A \neq 0$ for some A in $\Gamma(K_n)$, then $|K_n| \geq (n^2 - 3n + 2)/2$, with equality if and only if there exist permutation matrices P and Q such that

$$\{PAQ \mid A \in \Gamma(K_n)\} = \{[b_{ij}] \in M_n \mid b_{ij} = 0 \ \forall j > i+1\}.$$

COROLLARY 3. If $n \ge 5$ and every matrix in $\Gamma(K_n)$ is convertible, then $|K_n| \ge n$,

with equality only if every matrix in $\Gamma(K_n)$ has a zero row or a zero column.

REFERENCES

- 1. P. M. Gibson, An identity between permanents and determinants, Amer. Math. Monthly 76 (1969), 270-271. MR 39 #2779.
- 2. M. Marcus and H. Minc, On the relation between the determinant and the permanent, Illinois J. Math. 5 (1961), 376-381. MR 26 #5004.
- 3. H. Minc, On lower bounds for permanents of (0, 1) matrices, Proc. Amer. Math Soc. 22 (1969), 117-123, MR 39 #6891.
 - 4. G. Pólya, Aufgabe 424, Arch. Math. Phys. (3) 20 (1913), 271.

University of Alabama, Huntsville, Alabama 35807