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CONVERSION OF THE PERMANENT INTO
THE DETERMINANT!

P. M. GIBSON

ABsTRACT. Let 4 be an #n-square (0, 1)-matrix with positive
permanent. It is shown that if the permanent of 4 can be converted
into a determinant by affixing +signs to the elements of A then 4
has at most (n2+3n—2) /2 positive entries. Corollaries of this result
are given.

The permanent appears naturally in many combinatorial problems.
Since computations with the permanent are difficult, it is of interest
to find a simple method for conversion of the permanent into the
determinant. Pélya [4] noted that there is no method of uniformly
affixing + signs to the elements of the matrices of the vector space
M,, n>2, of all n-square matrices over the field F of characteristic
zero so that the permanent is converted into the determinant.
Marcus and Minc [2] generalized this by showing that if #>2 then
there is no linear transformation o:M,—M, such that per 4=
det g(4) for every 4 in M,. In this paper, a different improvement of
Pélya’s result is given. It is shown that if 4 is an n-square (0, 1)-
matrix with positive permanent and there is a way of converting the
permanent of 4 into a determinant by affixing + signs to the elements
of A then A4 has at most (n243n—2)/2 positive entries.

Let 4 = [a;;] be an n-square matrix. Let 4;; be the (n—1)-square
submatrix of 4 that remains after row z and column j are removed, and
let s;; denote the sum of the entries in the complement of 4, i.e.,

Z ik + E a'm] - au

k=1

If there exists an #-square matrix B = [b;;] such that per 4 =det B
and byj= ta;jfors,j=1, - - -, n, then A is convertible. If A containsa
kX (n—k) zero submatrix, for some 1<k <n—1, then A4 is partly de-
composable; otherwise, A4 is fully indecomposable.

If A and B are n-square matrices, let 4 ~B denote that there exist
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permutation matrices P and Q such that 4 = PBQ. Clearly, if 4 is con-
vertible and 4 ~B ,then B is convertible.

Let T, = [t;;] be the n-square (0, 1)-matrix with ¢;;=0 if and only if
1=<i<j<n, let v(4) denote the number of 1's in the (0, 1)-matrix 4,
and let Q,= (n?+3n—2)/2. If A~T,, then per 4 >0, v(4) =Q,, and
it follows from [1] that 4 is convertible. In this paper we prove the
converse.

We shall use the following three lemmas in our proof of the primary
result.

LeEMMA 1. If A = [ai;] is an n-square convertible (0, 1)-matrix, n=2,
and axm =1, then Ayn is convertible.

PRrOOF. Let B = [b;;] be an n-square matrix with per 4 =det B and
bsj= taij. Expanding per A and det B by row &,

6 2 @i per Ai; = 2 (—1)**iby; det Byj
j=1 j=1
Since b,'j= ia;j and a.-,gO,
2) axj per Ar; = (— 1) by; det Byj, j=1,---,n

Since Ggm=1= *+bxm, (1) and (2) imply that per Aim= tdet Bim.
Hence, A is convertible.

LEMMA 2. If A = [a;] is an n-square (0, 1)-matrix, n 2 3, with a;;=1

andv(A;;) Q. forj=1, - - -, n,then

3) min{s;;|1 S j S n} S n+2,

with equality only if

(C)) v(4) =1+ Q.
PRrOOF. Suppose that

(5) s = min{s;| 1 <5 < u}.

Since a;;=1,

(6) nspe = i sii = 2v(4) — n.

=1

Since V(Auc) §Qn—1,
Q) v(A4) S sie + Qnose

Combining (5), (6), and (7), we have (3). Suppose that equality holds
in (3). Then equality holds in (7). These two equalities imply (4).
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LEMMA 3. If A = [ay;] is an n-square (0, 1)-matrix, n=5, such that

8) a;=1=2s55;2n+ 1,

9) (gij=1Lsi5=n+1)= Ay~ Ty,
(10) an =1, su=n-+1,

(11) Ay = Toy,

then

(12) A~T,

ProoF. Suppose that a1,+a.,1=0. Since a1,=0, (11), (8), and (9)
imply that As,~7T,_;. Since a, =0, this implies that

(13) a;; =1, j=1,---,n—1

Similarly, 4,,n-1~T 01,

(14) agi=1 j=1,-+ ,n—1.

From (13) and (14), siu=2#—3. Since n= 3, this is a contradiction to
(10). Hence, a1,+a.=1. Combining this with (11) and (8),

(15) @+ e 2 1, j=2,---,m

We consider two cases.
Case (i). Let a;,+a.a=1. Suppose that ¢1,=1, a,1=0. From (10)
and (15),

(16) ajpg = Q21 = 1 or a3 + azy = 1.
Since a,a=0and n=35, (11), (16), and (9) imply that
(17) a1,n—1 + An—1,1 = 2.

From (10), (15), and (17), ai2s+axa=1=a13+as. Combining this with

(11) and (9), a1;=1,7=1, - - -, n. Combining this with (11) and (17),

we have (12). If a1, =0 and @, =1 a similar argument shows (12).
Case (ii). Let

(18) Q1n + an1 = 2.
Then (10) and (15) imply that
(19) ali+ajl=17 j=2)""”—1-

If a;,,.1=1, we can reduce this case to Case (i) by interchanging row
n—1 and row n of A. Suppose that a;,.1=0. Then there exists
1£k<n—2such thatay,=1and

(20) 0;=0, j=k+1,---,n—1
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We shall prove that
(21) a;=1 j=1,---,k
Let 7; be the jth row sum of A1 x4+1. Suppose that 2<m <k —1 with
aj=1,7=1, -+ -, m—1.Itiseasy to show that
7, > m,
ri <m, ji=2---,m—1,
ri > m, j=m—+1 -, n—1

Hence, since Axy1,641~Tn-1, we have r,, =m. Combining this with (11)
and (19), we have ai» = 1. This implies (21). Combining (11) with (18)
through (21), we have (12).

THEOREM. If A is an n-square convertible (0, 1)-matrix with per A >0
then

(22) »(4) = Q
with equality if and only if A~T,.

Proor. Clearly this statement is true for n=1, 2, and it is easy to
prove for n =3, 4. Assume that it is true for all m <, where n= 35, and
let A = [ai;] be an n-square convertible (0, 1)-matrix with per 4 >0.
Suppose that 4 is partly decomposable. We may assume that

[Al X ]

A= ,

A; A,

where A, is k-square, 1=k =<n—1. Since 4 is a convertible (0, 1)-

matrix and (per A4;) (per 4,) =per A>0, 4; is a convertible (0, 1)-
matrix with per 4;>0, j=1, 2. Hence, using the inductive assump-

tion,
v(A) E %+ k(n — k) + Qo = Q0 — 1.

This proves (22), for A partly decomposable.
Now suppose that 4 is fully indecomposable. We may assume that
an=1,

(23) su = min{s.-,-| a;; = 1}.

From Minc’s characterization of fully indecomposable matrices [3],
(24) per 4;; > 0, t,j=1,-++,n

Since per 411> 0, we may assume that

(25) a;; = 1, j=1-,n
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According to Lemma 1, 4;; is convertible. Hence, from (24) and the
inductive assumption,

(26) V(Ajj) é 9”_1, j = 1’ cee,m.
From (23), (25), (26), and Lemma 2,
@7 susn- 2.

Suppose that equality holds in (27). By Lemma 2, we have (4). Hence
v(A41) =Q.—1. Hence, from Lemma 1, (24), and the inductive assump-
tion, we have Ay~7T,_;. We may assume that

(28) Ay = Tus.

Since equality holds in (27), (23) and (28) imply that sz, =5$,,,—1=5;;
=n+2,j=2, .-, n—1, and therefore that a;;=a=1, j=2, - - -,
n. Since n = 5, this contradicts (27). Hence

(29) sus<n+1.

From (26) and (29), we have (22).

Suppose that equality holds in (22). Then A is fully indecom-
posable. From (26) and (29), equality must hold in (29) and »(41)
=Q, ;. Hence, by the inductive assumption, Ay~ T,_1, and we may
assume (11). Since equality holds in (29), we have (8) and (10). It is
easy to show (9). Hence by Lemma 3, A~T,. The converse follows
from [1].

We state three corollaries.

CoROLLARY 1. If A is an n-square convertible (0, 1)-matrix, n=5,
then v(A) Sn(n—1) with equality only if A has a zero row or a zero
column.

Let M, be the ring of all #-square matrices over a field F of charac-
teristic zero. If

let
(K. = {[au] € Ma] 0 = OV G, 5) € Ka},
and let | K,| be the cardinal number of K.

CoROLLARY 2. If every matrix in T'(K,) is convertible and per A0
for some A in T'(K,), then |K,.| = (n*—3n+2)/2, with equality if and
only if there exist permutation matrices P and Q such that
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{PAQ| A E T(Kn)} = {[bi] € M| bis =0Vj>i+ 1}
COROLLARY 3. If n=5 and every mairix in T'(K,) is convertible, then
| Ka| 2,

with equality only if every matrix in I'(K,) has a zero row or a zero
column.
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