CHARACTERIZATIONS OF THE GENERALIZED CONVEX KERNEL

ARTHUR G. SPARKS

ABSTRACT. It is well known that the convex kernel K of a set S is the intersection of all maximal convex subsets of S. In this paper it is shown that the nth order kernel of a compact, simply-connected set S in the plane is an L_n set and is, in fact, the intersection of all maximal L_n subsets of S. Furthermore, it is shown that one does not have to intersect the family of all the maximal L_n subsets to obtain the nth order kernel, but that any subfamily thereof which covers the set is sufficient.

1. **Preliminaries.** Throughout this paper, all sets will be in E_2 . If B is a set, then \overline{B} will denote its closure, bd B its boundary, and B^c its complement. If x and y are points, then $P_n(x, y)$ will denote a polygonal n-path joining x to y.

Let A be a set and let x be in A. Then K(n, x, A) will denote the nth order kernel of x in A. The nth order kernel of A will be denoted by K(n, A). For precise definitions of K(n, x, A) and K(n, A), see [2].

DEFINITION. A compact set S is said to be simply-connected if and only if S^c is connected.

Hereafter, S will denote a compact, simply-connected set. It is important to remember that if J is a closed Jordan curve in S, then the interior of the Jordan curve J is contained in S.

DEFINITION. Suppose that $p, q \in S$ and C(p, q) is a polygonal path from p to q in S. Then C(p, q) is called a *minimal* 1-path if C(p, q) is the segment [p, q]. Let k > 1, then C(p, q) is called a *minimal* k-path if C(p, q) is a k-path of minimal length joining p to q in S and $p \notin K(k-1, q, S)$.

Several results in a previous paper by this author [2] will be stated for later use.

THEOREM 1.1. Let A be a set and let B be an L_n subset of A. Then B is contained in a maximal L_n subset of A.

THEOREM 1.2. Suppose $p \in K(m, q, S)$ for some m. Then there exists a minimal k-path from p to q in S for some k such that $1 \le k \le m$.

Presented to the Society, August 29, 1969 under the title A characterization of the generalized convex kernel; received by the editors December 7, 1969 and, in revised form, April 15, 1970.

AMS 1970 subject classifications. Primary 52-XX, 52A10.

Key words and phrases. Convex kernel, generalized convex kernel, L_n sets.

THEOREM 1.3. Suppose that p, $q \in K(n, x, S)$. Let $C_k(p, q)$ be a minimal k-path from p to q in S, then $C_k(p, q) \subset K(n, x, S)$.

THEOREM 1.4. Let $\mathfrak{L}_n = \{L_\alpha | \alpha \in \Delta_n\}$ be the set of all maximal L_n subsets of S. Then each L_α is compact and simply-connected. Furthermore, $\cap \mathfrak{L}_n$ is a compact, simply-connected, L_n set.

2. Characterizations of K(n, S).

THEOREM 2.1. Let A be a compact, L_n subset of S. Suppose $x \in S$ is such that $A \subset K(n, x, S)$. Then $A \cup \{x\}$ is contained in an L_n subset of S.

PROOF. Let $a \in A$. Since $x \in K(n, a, S)$, it follows from Theorem 1.2 that there exists a minimal k(a)-path $C_{k(a)}(a, x)$ joining a to x in S, where $k(a) \leq n$. Let $G = \bigcup \{C_{k(a)}(a, x) \mid a \in A\}$ and let D be the smallest compact, simply-connected set in S which contains G.

Suppose that p, $q \in G$. Then there exist a_1 , $a_2 \in A$ such that $p \in C_{k(a_1)}(a_1, x)$ and $q \in C_{k(a_2)}(a_2, x)$. It is clear that $x \in K(n, a_1, D)$ and $a_2 \in K(n, a_1, D)$. Since $C_{k(a_2)}(a_2, x) \subset D$, it follows from Theorem 1.3 that $C_{k(a_2)}(a_2, x) \subset K(n, a_1, D)$. In particular, $q \in K(n, a_1, D)$ and thus $a_1 \in K(n, q, D)$. Now since $x \in K(n, q, D)$ and $C_{k(a_1)}(a_1, x)$ is also a minimal $k(a_1)$ -path in D, it follows again by Theorem 1.3 that $C_{k(a_1)}(a_1, x) \subset K(n, q, D)$. In particular, it is true that $p \in K(n, q, D)$.

Now suppose that p, $q \in \text{bd } D$. It is clear that $\text{bd } D \subset \overline{G}$. Since p, $q \in \overline{G}$, there exist sequences $\{p_i\}$ and $\{q_i\}$ in G such that $\{p_i\} \to p$ and $\{q_i\} \to q$.

Let i and j be arbitrary, then from the preceding it follows that $p_i \in K(n, q_j, D)$ since $p_i, q_j \in G$. Now i arbitrary implies that $\{p_i\}$ $\subset K(n, q_j, D)$. It has been shown by Bruckner and Bruckner [1], that $K(n, q_j, D)$ is compact. Thus, it follows that $p \in K(n, q_j, D)$. Hence, $q_j \in K(n, p, D)$ where j is arbitrary and thus $\{q_i\} \subset K(n, p, D)$. As before, K(n, p, D) is compact and hence $q \in K(n, p, D)$. Since $p, q \in \mathrm{bd} D$ were arbitrary, it follows by another result of Bruckner and Bruckner [1] that D is an L_n set. It is clear that $A \cup \{x\} \subset D \subset S$. This completes the proof.

THEOREM 2.2. Let $\mathfrak{L}_n = \{L_\alpha | \alpha \in \Delta_n\}$ be the set of all maximal L_n subsets of S. Then $K(n, S) = \cap \mathfrak{L}_n$.

PROOF. Clearly, $\bigcap \mathfrak{L}_n \subset K(n, S)$.

Suppose that x is in K(n, S) but not in L_{α} , for some $\alpha \in \Delta_n$. Since $L_{\alpha} \subset K(n, x, S)$, Theorem 2.1 implies that L_{α} and x are both contained in an L_n subset of S, contradicting the maximality of L_{α} . Hence, $K(n, S) \subset \cap \mathfrak{L}_n$.

Combining the above, the desired result is obtained.

The same technique can be used to prove the following result:

THEOREM 2.3. Let $\mathfrak{L}'_n \subset \mathfrak{L}_n$ be such that $\bigcup \mathfrak{L}'_n = S$, then $\bigcap \mathfrak{L}'_n = K(n, S)$.

THEOREM 2.4. The set K(n, S) is an L_n set.

PROOF. Combine Theorems 1.4 and 2.2.

REFERENCES

- 1. A. M. Bruckner and J. B. Bruckner, Generalized convex kernels, Israel J. Math. 2 (1964), 27-32. MR 30 #1448.
- 2. A. G. Sparks, Intersections of maximal L_n sets, Proc. Amer. Math. Soc. 24 (1970), 245-250.
- 3. F. A. Toranzos, Radial functions of convex and star-shaped bodies, Amer. Math. Monthly 74 (1967), 278-280. MR 34 #8279.

CLEMSON UNIVERSITY, CLEMSON, SOUTH CAROLINA 29631

GEORGIA SOUTHERN COLLEGE, STATESBORO, GEORGIA 30458