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CHARACTERIZATIONS OF THE GENERALIZED
CONVEX KERNEL

ARTHUR G. SPARKS

Abstract. It is well known that the convex kernel K of a set 5 is

the intersection of all maximal convex subsets of S. In this paper it

is shown that the nth order kernel of a compact, simply-connected

set S in the plane is an Ln set and is, in fact, the intersection of all

maximal L„ subsets of 5. Furthermore, it is shown that one does not

have to intersect the family of all the maximal Ln subsets to obtain

the »th order kernel, but that any subfamily thereof which covers

the set is sufficient.

1. Preliminaries. Throughout this paper, all sets will be in E2.

If B is a set, then B will denote its closure, bd B its boundary, and

Bc its complement. If x and y are points, then Pn(x, y) will denote a

polygonal ra-path joining x to y.

Let A be a set and let x be in A. Then K(n, x, A) will denote the

rath order kernel of x in A. The rath order kernel of A will be denoted

by K(n, A). For precise definitions of K(n, x, A) and K(n, A), see [2J.

Definition. A compact set 5 is said to be simply-connected if and

only if Sc is connected.

Hereafter, 5 will denote a compact, simply-connected set. It is

important to remember that if I is a closed Jordan curve in S, then

the interior of the Jordan curve I is contained in 5.

Definition. Suppose that p, qES and C(p, q) is a polygonal path

from p to q in 5. Then C(p, q) is called a minimal i-path if C(p, q) is

the segment [p, q]. Let k>\, then C(p, q) is called a minimal k-path

if C(p, q) is a ¿-path of minimal length joining p to q in 5 and pE

K(k-l,q,S).
Several results in a previous paper by this author [2] will be stated

for later use.

Theorem 1.1. Let A be a set and let B be an Ln subset of A. Then B

is contained in a maximal Ln subset of A.

Theorem 1.2. Suppose pEK(m, q, S) for some m. Then there exists

a minimal k-path from p to q in S for some k such that l^k^m.
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Theorem 1.3. Suppose that p, qEK(n, x, S). Let Ck(p, q) be a

minimal k-path from p to q in S, then Ck(p, q)EK(n, x, S).

Theorem 1.4. Let £n— {La\aEAn} be the set of all maximal Ln

subsets of S. Then each La is compact and simply-connected. Further-

more, n<£„ ii a compact, simply-connected, Ln set.

2. Characterizations of K(n, S).

Theorem 2.1. Let A be a compact, Ln subset of S. Suppose xES is

such that A EK(n, x, S). Then A\J \x\ is contained in an Ln subset of S.

Proof. LetaEA. Since xEK(n, a, S), it follows from Theorem 1.2

that there exists a minimal k(a)-path Ckt,a)(a, x) joining a to x in S,

where k(a) gn. Let G = U {Ck(a)(a, x)\aEA } and let D be the small-

est compact, simply-connected set in S which contains G.

Suppose that p, qEG. Then there exist au a2EA such that pE

Ck(ao(ai, x) and qECk(ai)(a2, x). It is clear thatxE2£(re, ai, D) and a2E

K(n, öi, D). Since Ck(^)(a2, x)ED, it follows from Theorem 1.3 that

Ck(a2)(a2, x)EK(n, ci, D). In particular, qEK(n, ai, D) and thus

aiEK(n, q, D). Now since xEK(n, q, D) and Ck(ai)(ai, x) is also a

minimal &(ai)-path in D, it follows again by Theorem 1.3 that

Cfc(ai)(ai, x)C2f(re, q, D). In particular, it is true that pEK(n, q, D).

Now suppose that p, qEhd D. It is clear that bd DEG. Since

p, qEG, there exist sequences [pi] and {g,J in G such that {pi}—*p

and {îi}—>g.

Let i and j be arbitrary, then from the preceding it follows that

piEK(n, q¡, D) since pi, q¡EG. Now i arbitrary implies that {pi}

EK(n, q¡, D). It has been shown by Bruckner and Bruckner [l],

that K(n, q¡, D) is compact. Thus, it follows that pEK(n, q¡, D).

Hence, q¡EK(n, p, D) where/ is arbitrary and thus {g¿} EK(n, p, D).

As before, K(n, p, D) is compact and hence qEK(n, p, D). Since

p, qEhd D were arbitrary, it follows by another result of Bruckner

and Bruckner [ 1 ] that D is an Ln set. 11 is clear that A W {x} C D E S.

This completes the proof.

Theorem 2.2. Let £n= {La\aEAn} be the set of all maximal Ln

subsets of S. Then K(n, S) =(")£„.

Proof. Clearly, f)£nEK(n, S).
Suppose that x is in K(n, S) but not in La, for some aEAn. Since

LaEK(n, x, S), Theorem 2.1 implies that La and x are both contained

in an Ln subset of S, contradicting the maximality of La. Hence,

K(n, 5)Cn£„.
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Combining the above, the desired result is obtained.

The same technique can be used to prove the following result:

Theorem 2.3. Let £'nE£n be suchthat \J£'„ = S, then r\£'„=K(n, S).

Theorem 2.4. The set K(n, S) is an L„ set.

Proof. Combine Theorems 1.4 and 2.2.
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