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A COMPARISON THEOREM FOR OPERATORS
WITH COMPACT RESOLVENT

REESE T. PROSSER

Abstract. The asymptotic behavior of the eigenvalue sequence

of a semibounded operator with compact resolvent is stable under

relatively bounded perturbations.

It is sometimes useful to have available results providing a means

of comparing the "size" of a given operator with that of another [S].

This is particularly true when their difference is "small," so that one

of them can be regarded as a perturbation of the other. We present

here an elementary result of this nature, valid for operators with com-

pact resolvent acting on a Hubert space, which derives from the work

of Erhard Heinz [4]. We obtain from this result that the asymptotic

behavior of the eigenvalue sequence of such an operator is stable

under relatively bounded perturbations, thus providing a modest

improvement on a recent result of Richard Beals [l ].

Let H be a Hubert space and A a closed nonnegative operator with

domain dom(A) dense in H. Denote by A112 the unique closed non-

negative square root of A.

Let B be another such operator, and suppose

(a) dom^^DdomtP^and

(b) m^xUgllP^xll for all * G dorn (B1'2).
Then we say B majorizes A, and write A^B. If B is bounded and

majorizes A, then clearly A is bounded, and (Ax, x) :£(Bx, x) for all

xEH. Moreover, if I^B, then B is invertible, and J^P-1.

For such operators we have the following sequence of results:

Lemma 1. If dom(A) Z)dom(B), then for some positive constant k we

have(I+A)2^k2(I+B)2.

Proof. Define on dom(^4) and dom(P) the norms \\x\\A = || (2"+.4)x||

and ||íc||s = ||(/-t-P)x||, respectively, and note that because A and B

are closed, dom(^4) and dom(P) become Hubert spaces under these

norms. Moreover, the injection J: dom(P)—>dom(^4) is evidently

closed under these norms. By the Closed Graph Theorem, / is

bounded, and ||:e||¿=||./*||¿á||./|| \\x\\B for alIa:Gdom(23), as required
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Lemma 2. If (I+A)2^k2(I+B)2, then (I+A)^k(I+B).

Lemma 3. If (I+A)^k(I+B), then (I+A^^k-^I+B)-1.

The proofs of these lemmas are found in the work of Erhard Heinz

[4], who provided a general framework for the study of such ques-

tions.

Now suppose that (7-f-.<4)_1 is compact. Then we know that A has a

pure point spectrum, and we can arrange the eigenvalues in order of

increasing magnitude: 0goi^o2^ • • • ^aBf «>. Moreover, if

(I+A)~1'^k(I+B)-1, then (7+73)-1 is also compact, and we can

arrange the eigenvalues bn of B similarly.

Lemma 4. If (I+A)-1 is compact, and (I+A)-l^k-l(I-\-B)-1 then

(1 +an)~1 è k~l(\ +bn)~1for all n.

Proof. This follows from the variational definition of the eigen-

values (1+an)-1 and (l+ô«)"1 of (I+A)-1 and (I+B)~\ respectively

[3].
Combining these results, we obtain

Theorem 5. If (I+A)*1 is compact, and dom(A)Z)dom(B), then

(I+B)-1 is compact, and for some positive constant k we have (l+o„)

^k(\+bn)foralln.

Now write V=A —B, and suppose V is bounded relative to B:

II Fx|| ííc|| (7+70*11 for some e>0 and all*£dom(i?). Then we have

||(7 + A)x\\ á ||(7 + 2»*|| + ||7*|| Ä (1 + c)|l(7 + £)*||.

Moreover, if c < 1, then

||7*|| úc\\(I+ A- V)x\\ = c||(7+ A)x\\ + c\\Vx\\,

so (l-c)||7*||ác||(7+i4)*|| and || 7*|| ác(l -c)-1\\(I+A)x\\. Hence,

||(7 + ¿0*|| = ||(7 + A)x\\ + ||7*|| S (1 - c)-'||(/ + A)x\\.

Under these circumstances we have

(1 - C)||(7 + ¿0*11 g ||(7 + A)x\\ = (1 + c)||(7 + 5)*||.

Corollary. If in addition \\(A—B)x\\^c\\(I+B)x\\ for all x
£dom(¿0 and some constant 0<c<l, then we have dom(A) = dom(¿3),

and

(1 - c)(l + an) á (1 + bn) á (1 + e)(l + a,)       for all n.

These results extend easily to semibounded operators by replacing
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A by A +a I for large a > 0, and to general operators by replacing A

by (AA *y* [S].
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