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ON THE VANISHING OF Ext

MARK RAMRAS1

Abstract. In this paper we exhibit certain modules^! over a com-

mutative noetherian local ring (R, SÏÏÎ) which test projective dimen-

sion of finitely generated modules in the following sense: if

Ext'CM", A) =0 for all j^i, then pd M<i.

We also show that the module 9JÎ tests in a stronger way: if

Ext'CM", m) =0, then pd M<i.
In conclusion we show that if (R, 5K) is artin, then R is self-in-

jective if and only if Ext'Crc/SJÎ". R)=0, where the index of nil-

potence of 2JÎ is « + 1.

Let (R, 9JÎ) be a commutative, noetherian, local ring with maximal

ideal S0Î. It is well known that for any finitely generated i?-moduIe

M, if ExV(M, R/ffl) = 0, then the projective dimension of _M"(pd M)

is less than i. We shall say that R/ffi is a strong test module. In this

paper we exhibit another strong test module, namely 90Î.

We define a weak test module as a module A such that for any

finitely generated module M, if ExV'(M, ^4)=0 for all j^l, then

pd M<i. The following theorem is proved: Let e0 = l and, for i^l,

let ei=[W/W+l:R/'SSl] (vector space dimension). If en>J%~¿ e>

then 2?/9)?n+1 is a weak test module. As a corollary we show that if R

is regular local of dimension k and S = R/'SRn+1, n-\-\^k, then 5 is a

weak test module as an 5-module.

We conclude with the observation that if R is artin then R is

self-injective if and only if Kxt1(R/Wl, 22) =0 where the index of

nilpotence of 50Î is « + 1.

Notation and conventions. Throughout this paper (R, 2K) will de-

note a commutative, noetherian, local ring with maximal ideal 50?

and with a unit element. All modules are uni tal and finitely generated.

By pd M we mean the projective dimension of M. For an 2?/9Ji-

module E, [E:2?/9Jî] will denote the vector space dimension of E.

We shall denote the direct sum of q copies of M by © ^a M.
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1. Strong test modules. We begin with the following

Definition. An it-module A is a strong test module if for all R-

modules M and for all î>0, Ext'(M, A) = 0 implies that pdM<i.

By taking a minimal resolution of M it is easy to see that

Ext*'(M, ic/äW) =Xi/fflXi, where Xt is the tth module in the resolu-

tion. Nakayama's Lemma shows that Ext*'(M, R/W) = 0 if and only

if Xi = 0. Since the resolution was minimal, this happens if and only

if pd M<i. Hence R/ffl is a strong test module.

Lemma 1.1. A is a strong test module<^>for all modules M, Ext1 (AT, A)

= 0 implies that M is projective.

Proof. (=>) Obvious.

(<=) By induction on i. We have the case i — 1 by assumption.

Let <)-».£-»F-»M-»0 be exact with F free. Then ExV(K, A)

^Extí+1(M, A). Súpose the theorem is true for i and Ext*'+1(Af, A)

= 0. Then ExV(K, A)=0, so pd K<i, and therefore pd M<i+1- ■

Lemma 1.2. If M¿¿0 and Ext^ilf, Uli) =0 then R is a direct sum-

mand of M.

Proof. Apply the functor Hom(M, ) to the exact sequence

0 -» m -» R -> R/m -* 0.

Then 0-»Hom(Af, W)^r\om(M, R)-»Horn(M, £/SDl)-»0 is exact.

Let/GHom(Af, R). Uf(M)=R then the sequence 0-»Ker f-*M

—>R—»0 splits, since R is projective, and we have the desired result.

So assume that for all /GHom(M, R), f(M)^R. Then f(M)EW
Hence the map Hom(Af, i?)-»Horn(If, R/W) is the zero map. But it

is also onto, so Hom(Af, R/W)=0. From the epimorphism

M-»Af/S»iM-»0 we have the injection 0-»Hom(Af/5DiAf, R/m)

->Hom(M, R/W). Thus Hom(M/5D?M, R/M)=0, which, since

M/WM is a vector space over R/W implies that M/$JIM = 0. Naka-

yama's Lemma says that M = 0, which is a contradiction. |

Theorem 1.3. If A*V0 and Extl(M, W)=0 then M is R-free.

Consequently Wl is a strong test module.

Proof. By Lemma 1.2, M=Mi®R. Since Ext commutes with

direct sums, Ext^Afi, 3Ii)=0. By the same lemma, if Mi^O then

Mi^M2®R. Thus M^M2®R®R. We may keep repeating this

process, except that M is finitely generated, so at some point Mt+i

= 0 and Mi = R. Hence Af=0 ¿ R and so it is iî-free.

The second statement follows from Lemma 1.1. H
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Proposition 1.4. If A is a strong test module and xÇuDî is A-regular

(i.e. x is not a zero divisor on A), then A/xA is a strong test module.

Proof. Suppose Ext1(AI, A/xA) =0 for some module M. From the

exact sequence 0^>Al+A-+A/xA-*0 we have that Ext^iW, A)

Ji>Exti(M, A)—>0 is exact. But Ext^Af, A) is finitely generated since

M and A are, so by Nakayama's Lemma Ext1(M, ^4)=0. Hence

M is 2?-free. |

The next proposition shows that the class of strong test modules

is rather limited.

Proposition 1.5. If A is a strong test module then depthR ^4^1.

Proof, depths A — the length of the longest A -regular sequence

contained in 9)? = the least integer i^O such that Ext'(2?/ÍÜ?, ^4)^0.

Thus if depths>1 then Ext^R/W, A)=0 and hence R/M is R-

free. This means that 9JÎ = 0, which implies that depths ^4=0, con-

trary to our assumption. So depths A s¡ 1. H

2. Weak test modules.

Definition. A is a weak test module if for all modules M and for

all *>0, if Ext3'(Af, A) =0 for all j^ 1 then M is 22-free.
The following lemma is the analogue of Lemma 1.1; its proof is

nearly identical to that of Lemma 1.1 and we omit it.

Lemma 2.1. A is a weak test modules for all modules M, if

ExV(M, A)=0for allj^l then M is R-free.

Notation. Let e0 = 1 and, for i> 0, let a = [W/W*1 :R/$(l].

Theorem 2.2. Suppose en> 121-0 e»> for some n^i. If

ExV(M, R/*mn+1) = 0   for alli>0

then M is R-free. In other words, 2?/9)în+1 is a weak test module.

Proof. The following sequences are all exact:

(i) o^w/imn+l-^R/m"+i^ R/mn ^o,

(2) 0 -+ 2Ji"-y2tt" -+ 2c/9Jt" -+ 2c/5f/i»-1 -> 0,

(n) 0^   m/W   -» R/Wl2 -+   R/ffl  -^0.

If we apply the functor Hom(M, ) to each of these sequences, we

obtain long exact sequences from which we extract the following, for

all i>0:
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(10 ExV(M, R/mn) S ExV+^M, 3Ji"/2>i"+1),

(2')      Ext;(M, aW-VSK") -* ExV(M, R/Wl") -» Ext^Af, tf/SDÎ"-1),

(»0        ExV(M,m/m2)   -^ExV(M, R/W)->   ExV(M,R/W).

Each of these Ext modules has finite length since M is finitely

generated and all the modules appearing in the second variable have

finite length. We now compute these lengths.

First we note that if .X"—»F—»Z is a short exact sequence of modules

of finite length then

length(F) g length(X) + length(Z).

Now let ¿,= [Exf(Af, R/W):R/W:]. Since W/mk+l^ © £<* R/ÏÏH
and Ext commutes with direct sums in either variable,

Ext^M, W/W+1) S©E Ext*(Af, R/W)-
'k

Hence

length(Ext«(Af, W/W1^)) = ekdi.

Thus:

(1")       length(Ext¿(Af, R/W)) = endi+i,

(2")       length(Exti(M, 2í/HK»)) ̂ e«-i¿< + length(Ext'(Jf, R/Wl"-1)),

(3")    length(Ext¿(Af, R/W'1)) ^ e*-ja< + length(Ext'(Jf, £/9J?"-2)),

(«'")       length(Ext*(Jf, Ä/SDl*)) ̂   e^,-   + ¿„a*       Oo = 1).

Putting these inequalities together: endj+\ ^dj / ."iñ ek. Hence

di+iè(^2tZoek/en)di = r-di, and by hypothesis, r<i. We have, then,

d2^r-di, d3^r-d2, ■ ■ ■ , á,+í^r-¿¿. Hence for all »el, dí+iá^ái.

Since r < 1, for large enough ¿, rl'¿i< 1. But d¿+i is a nonnegative inte-

ger, so ¿,+i = 0. Hence Exti+1(Af, R/W)=0. R/Wi is a strong test

module, so pd M=j<i + l. Thus for any module N, Exty(Af, N)¿¿0

[2, Proposition 4.10]. In particular, then, Ext'(Af, R/W+^^O. By

our hypothesis/ must be 0, i.e. pd M = 0, and since R is local, M is

Ä-free-B

Corollary 2.3. Let (R, W) be a local ring with 9Ji"+1 = 0. If

en > ^"lo ßi then R is a weak test module.

Now suppose (R, W) is a regular local ring of dimension k. Let
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[xi, • • ■ , xk\ be a minimal set of generators for 5D?. Then the mono-

mials of degree r in Xi, ■ ■ • , xk form a minimal generating set for

fflr, for any r^l. There are (t+r-1) such monomials, so er = (t+J_1).

To improve the notation, let us replace er with ek,r, to indicate

explicitly the dependence on k. So e*:,o=l and for r^l, ek,r

= (*+r-1)- Now using induction it is easy to verify that for r^l,

e(k, r)/z2r{-oe(k< i)=k/r. Hence if r<k, e(k, r)>^2\Zle(k, i). To-
gether with Corollary 2.3 this implies:

Corollary 2.4. Let (R, 2JÎ) be a regular local ring of dimension k.

Let S = R/Wln+1, n + l gjfe. If M is an S-module such that for all i>0,

Exts(M, S) =0, then M is S-free. In other words, S, as an S-module, is

a weak lest module.

It should be pointed out that if a local ring S, as an S-module, is a

weak test module, then every S-module whose Gorenstein dimension

(G-dim) is zero is S-free. (Following [l], G-dim M — Q if M is re-

flexive and for all i>0, Ext*s(M, S)=Ext's(M*, S)=0.) If a local

ring S is self-injective, then it is easy to see that every S-module has

G-dim zero, so if S is not a field there are nonfree modules M with

G-dim M = 0. However, it is not hard to construct artin local rings

which are not self-injective and which have nonfree modules whose

G-dim is zero.

For example, let (R, 2ft) be a local Cohen-Macauley ring of di-

mension one with inj dim¿e2í=oo. Let xEWl be 2?-regular and let

S = R/(x2). Then inj dim,gS = °o, [4, Theorem 2.10], and dim S = 0,

so S is artin. Let x = the image of x in S. Then anns(x) =Sx. Hence

the sequence 0—>Sx—>S-^>Sx—>0 is exact. Then (Sx)* = Horns (Sx, S)

~Homs(S/Sx, S) »anns(Sx) = Sx. So Sx is its own dual (and there-

fore is reflexive). Thus the above sequence is its own dual and so

Extl(Sx, S)=0. But Exts(Sa, S) «Exts+1(Sx, S) for all i>0. Hence

Ext4(Sx, S) =0 for all i>0. Since Sx^(Sx)*, Exts(Sx*, S) =0 for all

i>0. So G-dim Sx = 0, and Sx is not free since  anns(Sx) = Sx¿¿0.

We conclude this paper with an observation that the self-injec-

tivity of an artin local ring depends upon the vanishing of a single

particular Ext.

Proposition 2.5. Suppose (R, 9W) is an artin local ring with n+l

= index of nilpotence of 9JJ. Then R is self-injective^Ext1 (R/W, R) = 0.

Proof. (=») Obvious.

(<=) Dualizing the exact sequence 0—»9Jin—>2?—>i?/gn.n—>0 we have

that



462 MARK RAMRAS

O -* Hom(2?/$Dî", R) -> R -> Hom(50î», R) -» O

is exact. Hom(2?/Srr, 2c)«ann(9Ji") =<m (since $0c"+1 = O and ^"^0).

Hence Hom(9Jcn, 2c)«2?/9J?. But SDîn is an 2t/S)?-module and thus a

direct sum of copies of R/'Sl. Therefore Horn(30c", R) is a direct sum

of copies of Horn(^/STJc, R). Since, on the other hand, it is a simple

module, we conclude that 2?/90?«Hom(2Jc", 2t)«Hom(2?/9)c, R). Now

Hom(2?/2),c, R) is the socle of R, and it is well known (see,

for example, [3, Corollary 2.8]) that R is self-injective if and only if

length (socle of 22) = 1, so we are done. 01
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