ON THE VANISHING OF Ext

MARK RAMRAS1

ABSTRACT. In this paper we exhibit certain modules A over a commutative noetherian local ring (R, \mathfrak{M}) which test projective dimension of finitely generated modules in the following sense: if $\operatorname{Ext}^{j}(M, A) = 0$ for all $j \geq i$, then pd M < i.

We also show that the module $\mathfrak M$ tests in a stronger way: if $\operatorname{Ext}^i(M,\ \mathfrak M)=0$, then pd M< i.

In conclusion we show that if (R, \mathfrak{M}) is artin, then R is self-injective if and only if $\operatorname{Ext}^1(R/\mathfrak{M}^n, R) = 0$, where the index of nilpotence of \mathfrak{M} is n+1.

Let (R, \mathfrak{M}) be a commutative, noetherian, local ring with maximal ideal \mathfrak{M} . It is well known that for any finitely generated R-module M, if $\operatorname{Ext}^i(M, R/\mathfrak{M}) = 0$, then the projective dimension of $M(\operatorname{pd} M)$ is less than i. We shall say that R/\mathfrak{M} is a strong test module. In this paper we exhibit another strong test module, namely \mathfrak{M} .

We define a weak test module as a module A such that for any finitely generated module M, if $\operatorname{Ext}^{j}(M, A) = 0$ for all $j \ge 1$, then $\operatorname{pd} M < i$. The following theorem is proved: Let $e_0 = 1$ and, for $i \ge 1$, let $e_i = \left[\mathfrak{M}^{i} / \mathfrak{M}^{i+1} \colon R / \mathfrak{M} \right]$ (vector space dimension). If $e_n > \sum_{i=0}^{n-1} e_i$ then R / \mathfrak{M}^{n+1} is a weak test module. As a corollary we show that if R is regular local of dimension k and $S = R / \mathfrak{M}^{n+1}$, $n+1 \le k$, then S is a weak test module as an S-module.

We conclude with the observation that if R is artin then R is self-injective if and only if $\operatorname{Ext}^1(R/\mathfrak{M}^n, R) = 0$ where the index of nilpotence of \mathfrak{M} is n+1.

Notation and conventions. Throughout this paper (R, \mathfrak{M}) will denote a commutative, noetherian, local ring with maximal ideal \mathfrak{M} and with a unit element. All modules are unital and finitely generated. By pd M we mean the projective dimension of M. For an R/\mathfrak{M} -module E, $[E:R/\mathfrak{M}]$ will denote the vector space dimension of E. We shall denote the direct sum of P copies of P by P and P and P and P and P are spaced dimension of P.

Received by the editors January 6, 1970.

AMS 1970 subject classifications. Primary 13C10, 13D05; Secondary 13H10.

Key words and phrases. Projective dimension, Ext, commutative noetherian local ring, length of a module, artin local ring, socle.

¹ This research was partially supported by the U. S. Army Research Office (Durham).

1. Strong test modules. We begin with the following

DEFINITION. An R-module A is a strong test module if for all R-modules M and for all i>0, $\operatorname{Ext}^i(M,A)=0$ implies that $\operatorname{pd} M< i$.

By taking a minimal resolution of M it is easy to see that $\operatorname{Ext}^i(M, R/\mathfrak{M}) = X_i/\mathfrak{M} X_i$, where X_i is the ith module in the resolution. Nakayama's Lemma shows that $\operatorname{Ext}^i(M, R/\mathfrak{M}) = 0$ if and only if $X_i = 0$. Since the resolution was minimal, this happens if and only if $\operatorname{pd} M < i$. Hence R/\mathfrak{M} is a strong test module.

LEMMA 1.1. A is a strong test module \Leftrightarrow for all modules M, $\operatorname{Ext}^1(M, A) = 0$ implies that M is projective.

PROOF. (\Rightarrow) Obvious.

 (\Leftarrow) By induction on i. We have the case i=1 by assumption. Let $0\to K\to F\to M\to 0$ be exact with F free. Then $\operatorname{Ext}^i(K,A)\cong \operatorname{Ext}^{i+1}(M,A)$. Supose the theorem is true for i and $\operatorname{Ext}^{i+1}(M,A)=0$. Then $\operatorname{Ext}^i(K,A)=0$, so $\operatorname{pd} K< i$, and therefore $\operatorname{pd} M< i+1$.

LEMMA 1.2. If $M \neq 0$ and $\operatorname{Ext}^1(M, \mathfrak{M}) = 0$ then R is a direct summand of M.

Proof. Apply the functor Hom(M,) to the exact sequence

$$0 \to \mathfrak{M} \to R \to R/\mathfrak{M} \to 0.$$

Then $0 \rightarrow \operatorname{Hom}(M, \mathfrak{M}) \rightarrow \operatorname{Hom}(M, R) \rightarrow \operatorname{Hom}(M, R/\mathfrak{M}) \rightarrow 0$ is exact. Let $f \in \operatorname{Hom}(M, R)$. If f(M) = R then the sequence $0 \rightarrow \operatorname{Ker} f \rightarrow M \rightarrow R \rightarrow 0$ splits, since R is projective, and we have the desired result. So assume that for all $f \in \operatorname{Hom}(M, R)$, $f(M) \neq R$. Then $f(M) \subset \mathfrak{M}$. Hence the map $\operatorname{Hom}(M, R) \rightarrow \operatorname{Hom}(M, R/\mathfrak{M})$ is the zero map. But it is also onto, so $\operatorname{Hom}(M, R/\mathfrak{M}) = 0$. From the epimorphism $M \rightarrow M/\mathfrak{M}M \rightarrow 0$ we have the injection $0 \rightarrow \operatorname{Hom}(M/\mathfrak{M}M, R/\mathfrak{M}) \rightarrow \operatorname{Hom}(M, R/\mathfrak{M})$. Thus $\operatorname{Hom}(M/\mathfrak{M}M, R/\mathfrak{M}) = 0$, which, since $M/\mathfrak{M}M$ is a vector space over R/\mathfrak{M} , implies that $M/\mathfrak{M}M = 0$. Nakayama's Lemma says that M = 0, which is a contradiction.

THEOREM 1.3. If $M \neq 0$ and $\operatorname{Ext}^1(M, \mathfrak{M}) = 0$ then M is R-free. Consequently \mathfrak{M} is a strong test module.

PROOF. By Lemma 1.2, $M \cong M_1 \oplus R$. Since Ext commutes with direct sums, $\operatorname{Ext}^1(M_1, \mathfrak{M}) = 0$. By the same lemma, if $M_1 \neq 0$ then $M_1 \cong M_2 \oplus R$. Thus $M \cong M_2 \oplus R \oplus R$. We may keep repeating this process, except that M is finitely generated, so at some point $M_{t+1} = 0$ and $M_i = R$. Hence $M \cong \bigoplus \sum R$ and so it is R-free.

The second statement follows from Lemma 1.1.

PROPOSITION 1.4. If A is a strong test module and $x \in \mathfrak{M}$ is A-regular (i.e. x is not a zero divisor on A), then A/xA is a strong test module.

PROOF. Suppose $\operatorname{Ext}^1(M, A/xA) = 0$ for some module M. From the exact sequence $0 \to A \xrightarrow{x} A \to A/xA \to 0$ we have that $\operatorname{Ext}^1(M, A) \xrightarrow{x} \operatorname{Ext}^1(M, A) \to 0$ is exact. But $\operatorname{Ext}^1(M, A)$ is finitely generated since M and A are, so by Nakayama's Lemma $\operatorname{Ext}^1(M, A) = 0$. Hence M is R-free.

The next proposition shows that the class of strong test modules is rather limited.

PROPOSITION 1.5. If A is a strong test module then depth_R $A \leq 1$.

PROOF. depth_R A = the length of the longest A-regular sequence contained in \mathfrak{M} = the least integer $i \ge 0$ such that $\operatorname{Ext}^i(R/\mathfrak{M}, A) \ne 0$. Thus if depth_R A > 1 then $\operatorname{Ext}^1(R/\mathfrak{M}, A) = 0$ and hence R/\mathfrak{M} is R-free. This means that $\mathfrak{M} = 0$, which implies that depth_R A = 0, contrary to our assumption. So depth_R $A \le 1$.

2. Weak test modules.

DEFINITION. A is a weak test module if for all modules M and for all i > 0, if $\operatorname{Ext}^{j}(M, A) = 0$ for all $j \ge 1$ then M is R-free.

The following lemma is the analogue of Lemma 1.1; its proof is nearly identical to that of Lemma 1.1 and we omit it.

LEMMA 2.1. A is a weak test module \Leftrightarrow for all modules M, if $\operatorname{Ext}^{j}(M, A) = 0$ for all $j \ge 1$ then M is R-free.

NOTATION. Let $e_0 = 1$ and, for i > 0, let $e_i = [\mathfrak{M}^i/\mathfrak{M}^{i+1}: R/\mathfrak{M}]$.

THEOREM 2.2. Suppose $e_n > \sum_{i=0}^{n-t} e_i$, for some $n \ge 1$. If

$$\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n+1}) = 0$$
 for all $i > 0$

then M is R-free. In other words, R/\mathfrak{M}^{n+1} is a weak test module.

PROOF. The following sequences are all exact:

(1)
$$0 \to \mathfrak{M}^{n}/\mathfrak{M}^{n+1} \to R/\mathfrak{M}^{n+1} \to R/\mathfrak{M}^{n} \to 0,$$
(2)
$$0 \to \mathfrak{M}^{n-1}/\mathfrak{M}^{n} \to R/\mathfrak{M}^{n} \to R/\mathfrak{M}^{n-1} \to 0,$$

$$\begin{array}{cccc} \vdots & \vdots & \vdots & \vdots & \vdots \\ (n) & 0 \to & \mathfrak{M}/\mathfrak{M}^2 & \to & R/\mathfrak{M}^2 \to & R/\mathfrak{M} & \to 0. \end{array}$$

If we apply the functor $\text{Hom}(M, \cdot)$ to each of these sequences, we obtain long exact sequences from which we extract the following, for all i > 0:

(1')
$$\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n}) \cong \operatorname{Ext}^{i+1}(M, \mathfrak{M}^{n}/\mathfrak{M}^{n+1}),$$

$$(2') \quad \operatorname{Ext}^{i}(M, \mathfrak{M}^{n-1}/\mathfrak{M}^{n}) \to \operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n}) \to \operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n-1}),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(n') \qquad \operatorname{Ext}^{i}(M, \mathfrak{M}/\mathfrak{M}^{2}) \longrightarrow \operatorname{Ext}^{i}(M, R/\mathfrak{M}^{2}) \longrightarrow \operatorname{Ext}^{i}(M, R/\mathfrak{M}).$$

Each of these Ext modules has finite length since M is finitely generated and all the modules appearing in the second variable have finite length. We now compute these lengths.

First we note that if $X \rightarrow Y \rightarrow Z$ is a short exact sequence of modules of finite length then

$$length(Y) \leq length(X) + length(Z)$$
.

Now let $d_i = [\operatorname{Ext}^i(M, R/\mathfrak{M}): R/\mathfrak{M}]$. Since $\mathfrak{M}^k/\mathfrak{M}^{k+1} \cong \bigoplus \sum_{e_k} R/\mathfrak{M}$ and Ext commutes with direct sums in either variable,

$$\operatorname{Ext}^{i}(M, \mathfrak{M}^{k}/\mathfrak{M}^{k+1}) \cong \bigoplus \sum_{e_{k}} \operatorname{Ext}^{i}(M, R/\mathfrak{M}).$$

Hence

length(Extⁱ(M,
$$\mathfrak{M}^k/\mathfrak{M}^{k+1}$$
)) = $e_k d_i$.

Thus:

- (1") length($\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n})) = e_{n}d_{i+1}$,
- (2") $\operatorname{length}(\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n})) \leq e_{n-1}d_{i} + \operatorname{length}(\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n-1})),$
- $(3'') \quad \operatorname{length}(\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n-1})) \leq e_{n-2}d_{i} + \operatorname{length}(\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{n-2})), \\ \vdots \qquad \vdots \qquad \vdots$

$$(n'') \qquad \operatorname{length}(\operatorname{Ext}^{i}(M, R/\mathfrak{M}^{2})) \leq e_{1}d_{i} + e_{0}d_{i} \qquad (e_{0} = 1).$$

Putting these inequalities together: $e_n d_{i+1} \leq d_i \sum_{k=0}^{n-1} e_k$. Hence $d_{i+1} \leq (\sum_{k=0}^{n-1} e_k/e_n) d_i = r \cdot d_i$, and by hypothesis, r < 1. We have, then, $d_2 \leq r \cdot d_1$, $d_3 \leq r \cdot d_2$, \cdots , $d_{i+1} \leq r \cdot d_i$. Hence for all $i \geq 1$, $d_{i+1} \leq r^i d_1$. Since r < 1, for large enough i, $r^i d_1 < 1$. But d_{i+1} is a nonnegative integer, so $d_{i+1} = 0$. Hence $\operatorname{Ext}^{i+1}(M, R/\mathfrak{M}) = 0$. R/\mathfrak{M} is a strong test module, so pd M = j < i+1. Thus for any module N, $\operatorname{Ext}^j(M, N) \neq 0$ [2, Proposition 4.10]. In particular, then, $\operatorname{Ext}^j(M, R/\mathfrak{M}^{n+1}) \neq 0$. By our hypothesis j must be 0, i.e. pd M = 0, and since R is local, M is R-free.

COROLLARY 2.3. Let (R, \mathfrak{M}) be a local ring with $\mathfrak{M}^{n+1}=0$. If $e_n > \sum_{i=0}^{n-1} e_i$, then R is a weak test module.

Now suppose (R, \mathfrak{M}) is a regular local ring of dimension k. Let

 $\{x_1, \dots, x_k\}$ be a minimal set of generators for \mathfrak{M} . Then the monomials of degree r in x_1, \dots, x_k form a minimal generating set for \mathfrak{M}^r , for any $r \ge 1$. There are $\binom{k+r-1}{r}$ such monomials, so $e_r = \binom{k+r-1}{r}$. To improve the notation, let us replace e_r with $e_{k,r}$, to indicate explicitly the dependence on k. So $e_{k,0} = 1$ and for $r \ge 1$, $e_{k,r} = \binom{k+r-1}{r}$. Now using induction it is easy to verify that for $r \ge 1$, $e(k, r) / \sum_{i=0}^{r-1} e(k, i) = k/r$. Hence if r < k, $e(k, r) > \sum_{i=0}^{r-1} e(k, i)$. Together with Corollary 2.3 this implies:

COROLLARY 2.4. Let (R, \mathfrak{M}) be a regular local ring of dimension k. Let $S = R/\mathfrak{M}^{n+1}$, $n+1 \leq k$. If M is an S-module such that for all i > 0, $\operatorname{Ext}_S^i(M, S) = 0$, then M is S-free. In other words, S, as an S-module, is a weak test module.

It should be pointed out that if a local ring S, as an S-module, is a weak test module, then every S-module whose Gorenstein dimension (G-dim) is zero is S-free. (Following [1], G-dim M=0 if M is reflexive and for all i>0, $\operatorname{Ext}_S^i(M,S)=\operatorname{Ext}_S^i(M^*,S)=0$.) If a local ring S is self-injective, then it is easy to see that every S-module has G-dim zero, so if S is not a field there are nonfree modules M with G-dim M=0. However, it is not hard to construct artin local rings which are *not* self-injective and which have nonfree modules whose G-dim is zero.

For example, let (R, \mathfrak{M}) be a local Cohen-Macauley ring of dimension one with inj $\dim_R R = \infty$. Let $x \in \mathfrak{M}$ be R-regular and let $S = R/(x^2)$. Then inj $\dim_S S = \infty$, [4, Theorem 2.10], and $\dim S = 0$, so S is artin. Let $\bar{x} =$ the image of x in S. Then $\operatorname{ann}_S(\bar{x}) = S\bar{x}$. Hence the sequence $0 \to S\bar{x} \to S \to S\bar{x} \to 0$ is exact. Then $(S\bar{x})^* = \operatorname{Hom}_S(S\bar{x}, S) \approx \operatorname{Hom}_S(S/S\bar{x}, S) \approx \operatorname{ann}_S(S\bar{x}) = S\bar{x}$. So $S\bar{x}$ is its own dual (and therefore is reflexive). Thus the above sequence is its own dual and so $\operatorname{Ext}_S^i(S\bar{x}, S) = 0$. But $\operatorname{Ext}_S^i(S\bar{x}, S) \approx \operatorname{Ext}_S^{i+1}(S\bar{x}, S)$ for all i > 0. Hence $\operatorname{Ext}_S^i(S\bar{x}, S) = 0$ for all i > 0. Since $S\bar{x} \approx (S\bar{x})^*$, $\operatorname{Ext}_S^i(S\bar{x}^*, S) = 0$ for all i > 0. So G-dim $S\bar{x} = 0$, and $S\bar{x}$ is not free since $\operatorname{ann}_S(S\bar{x}) = S\bar{x} \neq 0$.

We conclude this paper with an observation that the self-injectivity of an artin local ring depends upon the vanishing of a single particular Ext.

PROPOSITION 2.5. Suppose (R, \mathfrak{M}) is an artin local ring with n+1 = index of nilpotence of \mathfrak{M} . Then R is self-injective \Leftrightarrow Ext¹ $(R/\mathfrak{M}^n, R) = 0$.

Proof. (\Rightarrow) Obvious.

 (\Leftarrow) Dualizing the exact sequence $0 \rightarrow \mathfrak{M}^n \rightarrow R \rightarrow R/\mathfrak{M}^n \rightarrow 0$ we have that

$$0 \to \operatorname{Hom}(R/\mathfrak{M}^n, R) \to R \to \operatorname{Hom}(\mathfrak{M}^n, R) \to 0$$

is exact. Hom $(R/\mathfrak{M}^n, R) \approx \operatorname{ann}(\mathfrak{M}^n) = \mathfrak{M}$ (since $\mathfrak{M}^{n+1} = 0$ and $\mathfrak{M}^n \neq 0$). Hence Hom $(\mathfrak{M}^n, R) \approx R/\mathfrak{M}$. But \mathfrak{M}^n is an R/\mathfrak{M} -module and thus a direct sum of copies of R/\mathfrak{M} . Therefore Hom (\mathfrak{M}^n, R) is a direct sum of copies of Hom $(R/\mathfrak{M}, R)$. Since, on the other hand, it is a simple module, we conclude that $R/\mathfrak{M} \approx \operatorname{Hom}(\mathfrak{M}^n, R) \approx \operatorname{Hom}(R/\mathfrak{M}, R)$. Now Hom $(R/\mathfrak{M}, R)$ is the socle of R, and it is well known (see, for example, [3, Corollary 2.8]) that R is self-injective if and only if length(socle of R) = 1, so we are done.

REFERENCES

- 1. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. No. 94 (1969).
- 2. M. Auslander and O. Goldman, *Maximal orders*, Trans. Amer. Math. Soc. 97 (1960), 1-24. MR 22 #8034.
- 3. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 27 #3669.
- 4. M. Ramras, Maximal orders over regular local rings of dimension two, Trans. Amer. Math. Soc. 142 (1969), 457-479. MR 39 #6878.

HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138