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REAL LINE BUNDLES ON SPHERES

ALLAN L. EDELSON1

Abstract. Ina recent paper the author proved a classification

theorem for Atiyah-real vector bundles on spaces with free involu-

tions. This result is now applied to the group of Atiyah-real line

(i.e., one-dimensional) bundles on spheres, denoted Lr(S"). It is

proved that such bundles are classified by maps into a complex

quadric QCn. Using this classification it is proved that Lr(S1)=0

and that for «^3 the groups are all isomorphic.

1. Introduction. Atiyah-real vector bundles and the Grothendieck

group KR(X) were defined and studied in [l]. In [2] results were

obtained concerning the classification of such bundles by equivariant

maps into the complex Grassmann manifold. Specifically, it is shown

that when X carries a fixed point free involution there is an iso-

morphism 6:[X, BU-BO]m.-+KR(X). Here BO is identified with

the fixed point set of BU under the involution induced by complex

conjugation. The subscript denotes equivariant maps. Notice that

BU—BO has no fixed points.

In this paper the above classification is applied to Atiyah-real

line (i.e. one-dimensional) bundles. These bundles form a group

under tensor product denoted here by LR(X). Let Q(Cn) denote the

complex quadric with homogenous defining equation 23 2? = 0, and

let Q = Uis„s» Q(Cn). We then have the following:

Proposition 2. The inclusion 5n_1—>5'n defines a natural bijective

correspondence [S", Q]eq.—►[•S1"-1, Q]^. for «^4.

Corollary. For re ̂ 4 there is a natural isomorphism £,«(5")
-»L«(S-1).

Proposition 3. Lr(S1)=0.

Throughout this paper all spaces are compact, Hausdorff. The

reader is referred to [l] for the definition and properties of Atiyah-

real vector bundles. The sphere Sn is assumed to carry the antipodal
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involution and the inclusion Sn~1—*Sn is onto an equator. Complex

conjugation will be denoted K:Cn—>C".

2. Classification of real line bundles. Let £—>X be a complex vector

bundle, and £ the complex conjugate bundle. Then the natural map

£—>£ is a conjugate linear isomorphism and an involution t:£—>£ de-

fines a conjugate linear isomorphism £r—>£tm. An involution is de-

fined on \ by requiring that the following diagram commute:

& -♦ h
i r     i

It (I)—►ff«

The tensor product of two real bundles is again a real line bundle. We

require the following extension of a well-known result about com-

plex vector bundles:

Lemma 1. Let £—>X be a real line bundle. Then £®£ is the trivial

real line bundle over X.

Proof. The standard metric on the classifying bundle is invariant

and hence the metric induced in £ is equivariant in the sense that if

p'■ £ <8>£—*C is this metric, then p(ü, v) = k(p(u, v)).

Define a vector bundle morphism /:£<g>£—>XXC by f(ux®vx)

= (x, p(ux, vx)). Then/ is a surjective morphism of one-dimensional

vector bundles and hence is an isomorphism of the underlying com-

plex vector bundles. Since/ is equivariant it is an isomorphism of real

vector bundles.

Corollary. The real line bundles over X form a group under tensor

products.

Let LR(X) denote this group. By Proposition 11.1 of [2] there is

a natural bijective correspondence LR(X)<r->[X, PCx]e<l., and if X

carries a fixed-point free involution there is, by Proposition II.2 of

[2], a natural bijective correspondence Lr(X)—*[X, PC°c—PR°c]e<i..

Let Q(Cn) denote the quadric surface in PC" defined by y*" z\ = 0.

Then Q(Cn) is invariant under the involution and has no fixed points.

It is proved in [3] that PRn is a deformation retract of PCn — QCn in

the category of real spaces. Since PCn/PRn is homeomorphic to the

Thorn space of the normal bundle to Q(Cn) in PCn as real spaces with

basepoint (see [3, Corollary 6.4]), by retracting along the fibres we

have the following:

Lemma 2. Q(C") is a deformation retract of PCn—PRn as spaces

with involution.
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The inclusions (PC-PRn)->(PCn+1-PRn+1) induce inclusions

Q(Cn)-*Q(Cn+1) and commute with the deformation retractions.

Hence if we define (2 = UiSnSoo Q(Cn), Q is a deformation retract of

PC*—PR" as spaces with involution.

Corollary.  There is a natural bijective correspondence

[X, PC- - PR<°U. = [X, QU..

3. Real line bundles on spheres.

Proposition 1. The inclusion i: PC°° — PR^-^PCx is a weak homo-

topy equivalence.

Proof. Consider the fibration 51->52n-1APC" where S2n~x is

viewed as the unit sphere in C" and p is the projection. Since p is

equivariant, p-1(PRn)=S2n~1C\Rn, where Rn is viewed as the fixed

point set of Cn. We then have the restriction

PSl _^2„-l _ £„-1 £> pCn _ pR„

If we view S2"-1 as the unit sphere in R2n then a point of S2n_1 is a

pair (X, Y), X, YERn, and | X\ 2+ \ Y\2 = 1. We can view S""1 as the

subset {(X, Y)ES2n-1\ Y=o}. Then {(X, Y)ES2n'1\X = 0} ; also

an re —1 sphere is a strong deformation retract of S2n~l — 5B_1.

Explicitly, the homotopy may be defined by

ht(X, F) = (t-X,f(t, Y)-Y)

where

(f(t, Y))2= (l-i2-M2| F |2)/| F |2.

It then follows from the exact homotopy sequences of the above

fibrations that the inclusion i:PC"—PRn^>PCn defines an iso-

morphism i*:irk(PCn-PRn)-^Wk(PC") for k^n-2.

Since PCn+l is obtained from PC" by adjoining a single cell of

dimension 2re, the inclusion PCn-+PCn+m induces an isomorphism

■Kk(PCn)—>TTk(PCn+m) for k^2n— 1. From the commutative diagram

PC      —► PCn+m

î Î1

PCn _ pftn _> pÇn+m _ pßn+m

it follows that the inclusion PCn—PRn-+PCn+m—PRn+m induces an

isomorphism Tk(PCn-PRn)-^rk(PCn+m-PRn+m) for k^n-2. Thus

by Proposition 4.3 of [4] the inclusions PCn-+PC°° and PC—PRn

-^PC^—PR- induce isomorphisms in homotopy for k^n — 2. Letting
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ra go to infinity it follows that i*:irk(PCa — PPM)->irt(PCM) is an

isomorphism for all k. This proves Proposition 1.

Proposition 2. Let "&: [S", 0]eq.—►[•S"-1, Q]eq. be the map induced

by the inclusion Sn~1—>S". Then SP is infective for ra^3 and surjective

for ra = 4.

Proof. If f:Sn—>Q is equivariant then so is its restriction to Sn~1.

Any equivariant homotopy h:SnXl—*Q has an eq. ( = equivariant)

restriction to S"~1XI. Let D¿ and Dñ denote the upper and lower

hemispheres of Sn, and r the antipodal map. The ra-skeleton (Dñ X7)„

= D~ X {0, 1} VJS"-1 XL There is a map a: (7?" X7)n-><2 defined by

a(x, 0) = f(x), x E Dñ,

a(x, 1) = g(x), x E Dñ,

a(x, r) = h(x, r),        x ES"'1.

Clearly these definitions agree on the intersections. Then for ra = 3,

a extends, by Proposition 1, to

a'(x, t) = h(x, r),        x G"!»"-1,

a'(x,0) =f(x), xEDz,

a'(x, 1) = g(x), x E Dn-

We now wish to extend a' to an equivariant homotopy SnXI—*Q

whose restrictions to Sn X {0} and S" X {1} are the given maps / and

g. We do this using the involution in Q. Define a map a":5nX7—>Q

by the following:

a"(x, t) = a'(x, r), x E T>n~,

a"(x, t) = K(a'(r(x), r)), xE D+.

If xG-5"-1, then a"(x, r)=a'(x, r)=h(x, t). Furthermore a"(x, 0)

= a'(x, 0) =f(x) for xET>ñ and for xET>t we have a"(x, 0)

= k(o.'(t(x), 0)) =k(/(t(x))) =f(x) since/ is equivariant. Thus a" re-

stricted to Sn X {0} agrees with / and by a similar agreement a" re-

stricted to S" X {1} agrees with g. This shows that \¡/ is one-to-one.

Now let/: S1"-1—»Q be equivariant. By Proposition 1, / extends to a

map f':Dñ—*Q, at least for ra^4. Define a map f":Sn—*Q by the

following:

/"(*)=/'(*), xeDn-,

f"(x) = K(f(r(x))),       x E D+.

Then if xGT>„,
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f"(r(x)) = K(f'(x)) = «(/"(*))

and if xED„,

f"(r(x))=f'(r(x))=K(f"(x))

so that /" is equivariant and agrees with / on 5n_1. This implies

\p[f"]= [/] and that for «^4, ip is onto. This proves Proposition 2.

By the naturality of tensor products \f/ is in fact a homomorphism,

hence we have:

Corollary. For re ̂  4 the inclusion map defines an isomorphism

LR(S") S LR(S--1).

Proposition 3. [S\ <2]eq. = 0.

Proof. Let/, g'.S1-^>Q be equivariant. Let S° = {x+, x_} ES1. There

is a path a:I—>Q with cr(0) =f(x+), a(l) =g(x+). Then the restrictions

of/and g to Dt, together with <r(I) and k(ct(2)), define a map h'.S1—*Q

which extends to D2. The extension h(D2) and its conjugate, n(h(Di)),

define an equivariant homotopy f—g as in the proof of Proposition

2. This completes the proof of Proposition 3.

Note. The referee has pointed out that it follows from results of

J. Levine, Spaces with involutions and bundles over P", Amer. J.

Math. 85 (1963), that LR(S2) is infinite cyclic and LB(5n)=0 for

re>2.

Levine's equivariant homotopy group irn(X; T)= [Sn, A; X, T]e(l.

is precisely LR(Sn) when X = Q. With the use of his exact sequence

(Theorem 4.3) and the formula on p. 527, the groups can be com-

puted.

Bibliography

1. M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966),
367-386. MR 34 #6756.

2. A. L. Edelson, Real vector bundles and spaces with free involutions, Trans. Amer.

Math. Soc. (to appear).

3. P. Landweber, Fixed point free conjugations on complex manifolds, Ann. of

Math. (2) 86 (1967), 491-502. MR 36 #3382.

4. D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821.

State University of New York, Stony Brook, New York 11790

University of California, Davis, California 95616


