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AN ASYMPTOTIC PROPERTY OF THE
ROOTS OF POLYNOMIALS

HERMANN FLASCHKA1

Abstract. It is shown that if the imaginary parts of the roots

\j(s) of a polynomial P(A, s), s(£R", are unbounded for large |i|,

then they are in fact unbounded along a one-parameter algebraic

curve 5 =s(R). The result may be used to reduce certain questions

about polynomials in several variables to an essentially one-dimen-

sional form; this is illustrated by an application to hyperbolic poly-

nomials.

For a constant-coefficient partial differential equation

(1) P(-id/dt, -id/dxi, • • ■ , -id/dxN)u = 0

the correctness of the Cauchy problem, in the sense of Petrowsky, is

a purely algebraic question: do the roots Xy(s) of P(K, s)=0 satisfy

(2) | Im Xj(j) I ^ const

for all s in i?A? If N = 1, the roots can be expanded in a Puiseux series

[1]

oo

Ay(i) = 12 aks""
k—p

where the exponents qk tend to - » as £—>°o. Under the assumption

that (2) is violated, the function us(t, x)=exp i(Kj(s)t-{-sx) is a

solution of (1) which, either for /<0 or for ¿>0, grows exponentially

in the parameter s, while its values and those of its derivatives at

r = 0 depend only polynomially on 5. Incorrectness of the Cauchy

problem is essentially a consequence of this domination of the

Cauchy data by the solution. A generalized Puiseux series has been

used by Strang [2] to establish necessary conditions for correctness

of equations with variable coefficients.2 This technique does not extend

to the case N>1, however, because the Puiseux expansion is then no

longer available. If condition (2) should happen to be violated along
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a ray 5 = (air, ■ • ■ , a^r) =ar, with aERN fixed,

Im \j(ar) —» oo     as r —» °o(

then correctness could still be established by investigation of a

Puiseux expansion in powers of r. Unfortunately, there is an example

due to Petrowsky,

3 2 2
P(X, s) = A   — SiX   — s2\ + w2X — JÍ1Í2

which shows that, although ImXy(ar) may be bounded along each ray

s = ar, it may fail to be bounded uniformly over all rays and may

become infinite on more general curves through s-space; in this in-

stance, ImXy(r2, r)—»oo. The example is, in fact, general. The purpose

of this note is to show that if (2) is violated, then violation must occur

along an algebraic curve s = s(R) (Theorem 1). Thus there is still a

possibility of expanding the \¡ in a Puiseux series in the parameter

R, and proceeding with the incorrectness construction as for the

case N=l.

The proof of Theorem 1 relies heavily on the Seidenberg-Tarski

theorem (see [3] and below), and, as might be expected, can be

modified easily to yield information about the manner in which more

general algebraic inequalities are violated. This more inclusive state-

ment is given in Theorem 2, followed by a brief sketch of a situation

in which it may be of use.

Theorem 1 was conjectured by Professor G. Strang in the course

of a study of the correctness of the Cauchy problem [2 ] ; I would like

to thank him for numerous helpful suggestions.

2. Let P(X, 5) =■ XXo Pk(s)W, where pk(s) is a polynomial of de-

gree m — k. We define

A(i) = max Im Xj(s)    and    Ä(r) = sup A(s).
i |.| -r

It can be shown (see [3]) that for sufficiently large r, A(r) is an alge-

braic function: A(r) —Arh+ • • • . We assume that (2) is violated, so

that necessarily A>0; let us also suppose that A >0.

Theorem 1. Let e satisfying 0<€<.4 be given. There exist poly-

nomials Gi, ■ ■ ■ , Gn in two variables, and functions s¡(R),j=l, • • • ,

N, satisfying

(4) Gj(si(R), R) - 0,       j - 1, • - •, N,

for sufficiently large R, such that
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(5) A(s(R))>(A-e)\s(R)\\

for large R. (Here s(R) = (si(R), • • ■ , s„(R)).)

Proof. Write \ = pi+ip2, and P(X, s) = Pi(ßi, ß2, s)+iP2(ßi, ß2, s),

with Pi and P2 real polynomials. Then by assumption, the following

system of (real) polynomial equalities and inequalities will have real

solutions for large R:

Pi(ßi, ß2, s) = 0,        P2(ßi, ß2, s) = 0,

(Si)
\s\2 = R2«,       ßi>(A-e)Rp;

we have set r = R", where p and q are integers with h=p/q. According

to the Seidenberg-Tarski theorem, there exists a set K\, • • ■ , Kd of

systems of polynomial equations and inequalities in the two variables

ii and R, such that a given pair (s°, R°) may be extended to a solution

st, Si, • ■ ■ , Sff, ßi, ß2, R° of (Si) if and only if (5°, R°) satisfies at least

one of the systems K¡.

Concerning these K¡, we note first that at least one of them must

have solutions R, sx(R) for infinitely many R, i?—>oo, because (Si)

has solutions for large R. In addition, not all the systems K¡ may

contain an equation. Indeed, if this were the case, then for each R°

the value of si in any solution si, ■ ■ ■ , R° of (Si) would be restricted

to a finite set. However, because of the continuous dependence of the

roots of P(X, s) = 0 on s, if s°, • • • , R° is a solution of (Si), then a small

variation of si may be compensated for by variations oí s2, ■ ■ ■ , ß2,

without violation of any of the conditions (Si). There are, therefore,

infinitely many si for which the pair (si, R°) may be extended to a

solution of (Si). Finally, it is clear that at least one of the K,- which

have solutions si, R for infinitely many R, R—»°°, must consist of

inequalities only; we take this system to be K\.

Suppose Ki has the form

fi(si, R)^0    (or > 0),       i = 1, • • • , e.

The solution curves of the equations /¿(si, R)=0 divide the (si, R)-

plane (outside of a bounded region) into finitely many strips; be-

cause of the assumption on Ki, there will be at least one such strip,

say T, in the interior of which all/¿ are positive. Suppose Tis bounded

(again, for R large) by the algebraic curves si=gi(R), s2=g2(R); ulti-

mately, the curve si = \(gi(R)+g2(R)) =aiRkl+ ■ ■ ■ will lie in T,

and, provided that enough terms are included, so will the partial

Puiseux expansion



454 HERMANN FLASCHKA [March

(6) si = h(R) = aiRki + ■ ■ ■ + a,Rki.

Putfi(h(R), R)=Qi(R). A substitution R'^R11"', with q' an integer,

will convert the Q't into expressions involving only powers and recip-

rocals of R':Qi(R)=Q'i(R'). Then multiplication of

(Mil, Ä'«') - Qi(R'))2 + ■ • • + (fe(si, R'"') - QJ(R')Y

by a sufficiently high power of R' will result in a polynomial, Gi(si, R'),

with the following property:

For sufficiently large R', if s°, R°' satisfies Gi(s°, R°') =0, the pair

st, R° (with R0=R0'"') may be extended to a solution of (Si). Indeed,

from Gi(s°, R°')=0 follows, for each i = l, ■ ■ ■ , e, that/,(s?, R°'"')

= Q'i(R°'). Hencefi(s°i, R°) = Qi(R°)=fi(h(R°), R°)>0, so that s?, R°
satisfy the system Ki.

In a similar fashion, one now obtains a polynomial G2(s2, R"),

where R" = (R')llq", with the property:

For sufficiently large R", if (si, R°") satisfies G2(s¡, R°") = 0, then

52, R°' (with R°' = (R°"yii") may be extended to a solution of

Pi(pi, ß2, s) = 0,        P2(mi, p2, s) = 0,

(S2)

| 5 |2 = (ic')2™\       ß2 > (A - e)(R')p*',       Gx(si, R') = 0.

It must be noted that (S2) does indeed have solutions for large R'\

this follows from the defining property of &Y

After N—l steps, one obtains polynomials G¡(sj, R), j = l, ■ ■ ■ ,

N—Í, in Sj and a parameter R which is related to r by r = Rï, q inte-

ger, such that the system

PlGtl, M2, S)   =  0, P2OÍI1 M2, s)   =  0,

GSjm)

I i I2 = R2«'*,       u2> (A - ¿)Rpi,

Gi(sh R) =0,       j=l,---,N-l

has solutions for infinitely many R, R—»00.

Now there are only finitely many piecewise algebraic curves Si

= Si(R), ■ ■ ■ , sN=sN(R) which satisfy the conditions Gj(sj(R), R)

= 0, |s|2 = i?2;«. It follows then that there is a curve s=s(R), alge-

braic for sufficiently large R, along which we eventually have

ß2> (A - e)Rp^.

This proves the theorem.

Trivial modifications in the proof of Theorem 1 serve to establish
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Theorem 2. Let sERN, tERM, and let K be a system of real poly-

nomial equations and inequalities in s and t. Suppose further that A(s)

is a function having the properly that if h is replaced by A (s) in each

equation or inequality in K, then the resulting system has real solutions

t2, ■ ■ • , Im for all s. If, in addition, X(r) =sup is |-r A(s) is algebraic

for large r, and if"K(r)=Ark-\- ■ ■ ■ with h>0, then there is an algebraic

curve s—s(R), defined by polynomial equations (4), such that the in-

equality (5) is again satisfied.

3. In conclusion we outline another situation in which Theorem 2

can be applied. Consider a polynomial P(X, s) = / "_n Qk(X, s), ex-

pressed as a sum of polynomials Qk homogeneous of degree k, and

suppose that Qm(l, 0) =1. Let the distinct roots \=ßj(s) oí Qm(X, s)

= 0 be real and of constant multiplicities a¡, J = l, • • ■ , r. Defining

dj=\—ßj(s), we write Qm(X, s) =d"i ■ ■ ■ d"r, or simply Qm = da, with

the multi-index notation a = (ai, ■ ■ ■ , a/). Finally, for a general

polynomial R(t), tERM, define

m = (E \(d/dtyR(t)\2Y2,

the summation extending over all ß = (ßi, ■ ■■ , ßi/)-

It is known from work of Hörmander [4] and Svensson [5], that

the roots of P(X, s) will satisfy (2), i.e., P will be hyperbolic, if and

only if

(7) ( Qk(X, s) |   è const P(X, s)

for all k=0, ■ ■ ■ , m and (X, s)ERN+l- We now assert that this is

equivalent to

Qk can be written as a linear combination of products

(8) 3",  with ß^a and   \ß\ =k, and with coefficients

which are bounded functions of s.

Proof. Let (X(i?), s(R)) be an algebraic curve. Put f,(R) =X(i?)

—ßi(s(R)), and suppose that/i, ■ ■ • , fd are the only/y which tend

to zero as R—*<x>. If we now put ai+ ■ ■ • -\-a¿ = a and a

= (0, • • ■ , 0, ad+i, ■ ■ ■ , ar), then it is clear that of all the products

ft=fîl ' " 'fr', ßf=a, the one having the most rapid growth with R is

/". Because

da

-Qm(X, s) = const ô" + terms involving di, • • • , dd,

it follows that
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-Qm(HR), s(R)) = const/« + 0(f),       R^<*.
d\a

This implies that for any ß, ß^a,

\f\   g const Qm(\(R), s(R»,

so that if Qk has the form prescribed in (8), then the domination

inequality (7) is satisfied along each algebraic curve and hence, by

Theorem 2, uniformly in X and s. Condition (8) is therefore sufficient

for hyperbolicity.

The necessity of (8) was proved by A. Lax [ó] and Yamaguti [7],

as was, in fact, the sufficiency; we present our alternate proof partly

to illustrate the main theorem, and partly because the same technique

can be employed when the roots p3 have variable multiplicity to pro-

duce a description of the lower-order terms of a hyperbolic operator

not yet contained in the literature. This extension, as well as applica-

tions to equations with variable coefficients, will be discussed in

another paper.
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