MINIMAL NONNILPOTENT SOLVABLE LIE ALGEBRAS

ERNEST L. STITZINGER

ABSTRACT. We shall say that a solvable Lie algebra L is a minimal nonnilpotent Lie algebra if L is nonnilpotent but all proper subalgebras of L are nilpotent. It is shown here that if L is a minimal nonnilpotent Lie algebra, then L is the vector space direct sum of A and F where A is an ideal in L, F is a one-dimensional subalgebra of L, either A is a minimal ideal of L or the center of A coincides with the derived algebra, A', of A and in either case F acts irreducibly on A/A'.

P. Hall and G. Higman have shown in [5] that a nonnilpotent finite group G all of whose proper subgroups are nilpotent can be considered as the product of subgroups P and Q where P is cyclic of prime power order, p^{α} , Q is an invariant q-subgroup of G, $q \neq p$, $\phi(P) \leq Z(G)$ and Q is either elementary abelian or $\phi(Q) = Z(Q) = [Q, Q]$ where in either case P acts irreducibly on $Q/\phi(Q)$. We shall find a result on solvable Lie algebras which is roughly analogous to this result.

Let L be a finite-dimensional solvable Lie algebra and let M be a self-normalizing maximal subalgebra of L. The maximal ideal of L contained in M will be called the core of M. The intersection of all maximal subalgebras of L will be denoted by $\phi(L)$ and is an ideal in L by Lemma 3.4 of [2]. The derived algebra of L will be denoted by L' and the center of L by L(L). We first show the following result, the group theory analogue of which is shown in [4].

PROPOSITION. Let L be a solvable Lie algebra and let H be a self-normalizing maximal subalgebra of L. Let K be the core of H. Then

- (1) L/K contains a unique minimal ideal A/K,
- (2) L/K is the semidirect sum of A/K and H/K,
- (3) $\phi(L/K) = 0$, and
- (4) L/K is not nilpotent.

PROOF. Let $\overline{H} = H/K$, $\overline{L} = L/K$ and \overline{A} be a minimal ideal of \overline{L} . Since \overline{A} is abelian and \overline{H} is maximal in \overline{L} , $\overline{A} \cap \overline{H}$ is an ideal in \overline{L} contained in \overline{H} . Since \overline{H} contains no nonzero ideals of \overline{L} , $\overline{A} \cap \overline{H} = 0$. Then, since \overline{H} is maximal in \overline{L} , $\overline{A} + \overline{H} = \overline{L}$. If \overline{B} is another minimal ideal of \overline{L} , then the centralizer of \overline{A} in \overline{L} , $C_{\overline{L}}(\overline{A})$ properly contains \overline{A} . Then $\overline{H} \cap C_{\overline{L}}(\overline{A})$ is an ideal in \overline{L} contained in \overline{H} , hence $\overline{H} \cap C_{\overline{L}}(\overline{A}) = 0$ and,

Received by the editors April 6, 1970 and, in revised form, April 17, 1970. AMS 1970 subject classifications. Primary 17B30.

Key words and phrases. Fitting decomposition, Engel's Theorem.

therefore, \overline{A} is unique. Since \overline{H} is maximal in \overline{L} , $\phi(\overline{L}) \subseteq \overline{H}$. But $\phi(\overline{L})$ is an ideal in \overline{L} , hence $\phi(\overline{L}) = 0$. Finally, since \overline{H} is a self-normalizing maximal subalgebra of \overline{L} , \overline{L} is not nilpotent by Proposition 3, p. 56 of [3].

THEOREM 1. Let L be a nonnilpotent, solvable Lie algebra all of whose proper subalgebras are nilpotent. Then L is the vector space direct sum of A and F where A is an ideal of L, F is a one-dimensional subalgebra of L and either A is a minimal ideal of L or A' = Z(A). In either case, F acts irreducibly on A/A'.

PROOF. By the theorem of [1], L contains a self-normalizing maximal subalgebra H and H is clearly a Cartan subalgebra of L. Let K be the core of H in L. By the Proposition, L/K contains a unique minimal ideal A/K which complements H/K in L/K. Then $L/A \simeq H/K$ and, since H is nilpotent, L/A is nilpotent. Since L/K is not nilpotent and A/K is abelian, using Engel's Theorem, there exists $x \in L/K$, $x \notin A/K$ such that ad x is not nilpotent. Since H/K is nilpotent and H/K complements A/K in L/K, ad x restricted to A/K is not nilpotent. Then the subalgebra B/K of L/K generated by A/K and x is not nilpotent and since A/K is an ideal of L/K, dim $B/K = 1 + \dim A/K$. Hence B/K = L/K and dim $H/K = \dim L/A = 1$. Hence there exists a one-dimensional subalgebra F of L which is a complement of K in H and is also a complement of A in L.

Let $L=H+L_1$ be the Fitting decomposition of L with respect to H. Then H/K is a Cartan subalgebra of L/K and L_1+K/K is the Fitting one-component of L/K with respect to H/K. Since L/K = A/K+H/K, A/K is a minimal ideal of L/K and L/K is not nilpotent, H/K acts nontrivially and irreducibly on A/K. Since dim H/K=1 and H/K is a Cartan subalgebra of L/K, A/K is the Fitting one-component of L/K with respect to H/K. Hence $L_1+K/K=A/K$ and $L_1+K=A$. Furthermore, since $[K, L_1]\subseteq [H, L_1]\subseteq L_1$, $[K, L_1]\subseteq K\cap L_1=0$.

Let T be the subalgebra of L generated by L_1 . Since L_1 is F-invariant, T is also, and since $L_1 \subseteq A$, $T \subseteq A$. Now F+T is a nonnilpotent subalgebra of L, hence F+T=L. Then, since T is F-invariant, A=T. If K=0, $L_1=A$ is a minimal ideal of L. Suppose then that $K\neq 0$. We claim that K is abelian. Since A is generated by L_1 , we need only consider elements of K of the form [x, y], $x, y \in L_1$. Using the Jacobi identity on elements of this type and that $[K, L_1]=0$, one sees that [K, K]=0. Then $[A, K]\subseteq [K, K]+[L_1, K]=0$ and $K\subseteq Z(A)$. If $K\subset Z(A)$, then, since Z(A) is an ideal in L, Z(A) is F-invariant and hence $Z(A)\cap L_1$ is F-invariant. But then Z(A)=A which forces

K=0, a contradiction. Hence Z(A)=K. Since A/K is abelian, $A'\subseteq K$. But L_1 is a set of generators for A, therefore $K\subseteq A'$ and A'=K. Finally, since F acts irreducibly on A/K, the proof is complete.

The proof of Theorem 1 indicates we can state this result in the following way.

COROLLARY. Let L be a nonnilpotent, solvable Lie algebra all of whose proper subalgebras are nilpotent. Let H be a self-normalizing maximal subalgebra of L, K be the core of H and $L=H+L_1$ be the Fitting decomposition of L with respect to H. Then L is the vector space direct sum of K, L_1 and F where F is a one-dimensional subalgebra of L and K+F=H. Furthermore $A=K+L_1$ is an ideal of L and either K=0 and L_1 is a minimal ideal of L or A'=Z(A)=K. In either case, F acts irreducibly and nontrivially on A/A'.

REFERENCES

- D. W. Barnes, Nilpotency of Lie algebras, Math. Z. 79 (1962), 237-238. MR 27 #180.
- 2. D. W. Barnes and H. M. Gastineau-Hills, On the theory of soluble Lie algebras, Math. Z. 106 (1968), 343-354. MR 38 #1130.
- 3. N. Bourbaki, Livre XXVI: Groupes et algébres de Lie. Chap. 1, Actualités Sci. Indust., no. 1285, Hermann, Paris, 1960. MR 24 #A2641.
- 4. P. Hall, On system normalizers of a soluble group, Proc. London Math. Soc. (2) 43 (1937), 507-528.
- 5. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42. MR 17, 344.

NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607