DECOMPOSITION OF FUNCTION-LATTICES

S. D. SHORE

ABSTRACT. We give a simple direct proof of the theorem (due to Kaplansky-Blair-Burrill) that the lattice C(X, K) of all continuous functions defined on the topological space X with values in the chain K can be decomposed iff X contains an open-and-closed subset.

For any topological space X, let C(X, K) denote the lattice of all K-valued continuous functions defined on X, where K is any nonsingleton totally ordered set with the order topology. Clearly, if A is any open-and-closed subspace of X, then C(X, K) is lattice isomorphic to the direct product $C(A, K) \times C(X \setminus A, K)$. Improving a technique of Kaplansky [2], Blair and Burrill [1] have shown that a converse holds. We give a simple alternative proof of this result which, in contrast to the proofs of Kaplansky and Blair-Burrill, avoids use of the axiom of choice. For this observation and several other suggestions for improving the presentation we are grateful to the referee.

A sublattice $L \subseteq C(X, K)$ is adequate provided that, for each $x \in X$, there are functions $f, g \in L$ such that $f(x) \neq g(x)$.

THEOREM. If an adequate sublattice L of C(X, K) is lattice isomorphic to the direct product $L_1 \times L_2$ of lattices L_1 and L_2 , then there is an openand-closed subset $A \subseteq X$ such that L_1 is lattice isomorphic to $\{f \mid A : f \in L\}$ and L_2 is lattice isomorphic to $\{f \mid (X \setminus A) : f \in L\}$.

We first establish a

LEMMA. Let L_1 and L_2 be lattices and K be a totally ordered set. If $\alpha: L_1 \times L_2 \to K$ is a lattice homomorphism, then one of the following holds:

- (1) For any $k, k' \in L_2$, $\alpha(l, k) = \alpha(l, k')$ for any $l \in L_1$.
- (2) For any $l, l' \in L_1$, $\alpha(l, k) = \alpha(l', k)$ for any $k \in L_2$.

Moreover, if α is not constant, then precisely one of these holds.

Proof. Note that (1) is equivalent to:

(1') For any k, $k' \in L_2$, $\alpha(l_0, k) = \alpha(l_0, k')$ for some $l_0 \in L_1$.

This follows from the observation that

Received by the editors September 22, 1969.

AMS 1968 subject classifications. Primary 4625; Secondary 0630.

Key words and phrases. Lattices of chain-valued functions, adequate sublattices, homomorphism, connectedness.

190 S. D. SHORE

$$\alpha(l, k) = \alpha(((l_0, k) \wedge (l, k \vee k')) \vee (l, k \wedge k'))$$

= $\alpha(((l_0, k') \wedge (l, k \vee k')) \vee (l, k \wedge k')) = \alpha(l, k').$

Similarly, (2) is equivalent to:

(2') For any l, $l' \in L_1$, $\alpha(l, k_0) = \alpha(l', k_0)$ for some $k_0 \in L_2$.

Now, assume that condition (2) fails. Then, there exist l, $l' \in L_1$ such that $\alpha(l, k) \neq \alpha(l', k)$ for any $k \in L_2$. To show that condition (1) holds, consider any k, $k' \in L_2$. Then,

$$\alpha(l \wedge l', k \vee k') \vee \alpha(l \vee l', k \wedge k') = \alpha(l \vee l', k \vee k').$$

Since K is totally ordered and $\alpha(l \wedge l', k \vee k') = \alpha(l \vee l', k \vee k')$ implies that $\alpha(l, k \vee k') = \alpha(l', k \vee k')$ (a contradiction), we conclude that $\alpha(l \vee l', k \wedge k') = \alpha(l \vee l', k \vee k')$. Hence, $\alpha(l \vee l', k) = \alpha(l \vee l', k')$ so that conditions (1') and (1) hold. Evidently, both conditions hold iff α is constant.

PROOF OF THE THEOREM. Let L be an adequate sublattice of C(X, K) and $\psi: L_1 \times L_2 \to L$ be a lattice isomorphism. For each $x \in X$, the lattice homomorphism $\varphi_x: L \to K$, defined by $\varphi_x(f) = f(x)$, is not constant. From the preceding lemma $\varphi_x \circ \psi: L_1 \times L_2 \to K$ satisfies one, and only one, of the conditions (1) and (2). Define $A = \{x \in X: \varphi_x \circ \psi \text{ satisfies condition (1)}\}$. It follows easily that A and $X \setminus A$ are disjoint closed sets. Finally, define $\theta: L_1 \to \{f \mid A: f \in L\}$ by $\theta(l) = f \mid A$, where $f = \psi(l, k_0)$ for some $k_0 \in L_2$. It follows directly that θ is a lattice isomorphism. Similarly, one considers $X \setminus A$ so that the proof of the theorem is complete.

REMARKS. An easy corollary is that a topological space X is connected iff, for any totally ordered set K, there is no adequate sublattice $L \subseteq C(X, K)$ which is lattice isomorphic to the direct product $L_1 \times L_2$ of two lattices L_1 and L_2 , neither of which is a singleton. Hence, a topological space X is connected iff every extension of X is connected (where an extension of X is any topological space that contains X as a dense subspace).

References

- 1. R. L. Blair and C. W. Burrill, Direct decompositions of lattices of continuous functions, Proc. Amer. Math. Soc. 13 (1962), 631-634. MR 25 #2440.
- 2. I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623. MR 8, 587.

University of New Hampshire, Durham, New Hampshire 03824