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MINIMAL IMMERSIONS OF 2-SPHERES IN S4

ERNST A. RUH1

Abstract. The classification of isolated singularities of minimal

varieties leads to the study of minimal manifolds in the n-sphere.

The object of this paper is to show that a minimal 2-sphere in 5*

with trivial normal bundle is the standard 2-sphere.

In [l] Almgren showed that the only minimal 2-sphere in S3 is

the standard S2. For minimal spheres in S4 an additional assumption

is needed to rule out counterexamples. The Veronese surface, a mini-

mal imbedding of the projective plane in S4 is such an example. For

details see [3].

Some of the ideas in this paper are related to a paper by H. Hopf

[2] in which he proves that a 2-sphere immersed with constant mean

curvature in E3 is the standard S2. This connection is further empha-

sized by Theorem I, a generalization of Hopfs theorem.

2. Definitions and results. Throughout the paper, [4, Chapter VII]

is used as a standard reference. For convenience we recall a few

definitions here:

The mean curvature H, a cross section of the normal bundle, is

defined to be the trace of the second fundamental form. A surface is

called minimal in Sn~l if the mean curvature vector H is parallel to

the normal vector of 5n_1 in E". For technical reasons it is convenient

to consider the minimal surfaces in 5n_1 as surfaces in En. Of course

the surfaces are no longer minimal, but the mean curvature vector

H is still parallel; i.e., the covariant derivative of H in the normal

bundle is zero. However, for spheres nothing new is added as the

following theorem shows.

Theorem I. If I:S2—>En is an immersion of S2 into En with parallel

mean curvature vector of length one, then the image I(S2) is a minimal

surface in S"~l.

The next theorem is the main result of this paper.

Theorem II. If I: S2—>S* is an immersion of S2 into S* as a minimal
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surface with trivial normal bundle, then I(S2) is the standard totally

geodesic 2-sphere in S4.

Here we might add that, as the referee points out, the hypothesis

"with trivial normal bundle" is equivalent to "is regularly homotopic

to the standard immersion" by the Smale-Hirsch theory of immer-

sions.

3. Proofs. The main step in the proof of Theorem II consists in

showing that the curvature of the normal bundle does not change

sign. This step, as well as the proof of Theorem I, depends on a system

of partial differential equations for sections of the normal bundle.

These equations reduce to the Cauchy-Riemann equations in the

codimension-one case.

The local computations are made in an isothermal coordinate

system. The Codazzi equations, together with the assumption that

if is parallel, yield the following system of equations:

(*) VyU —  VXV = 0, VXU + VyV = 0

for the sections u and v of the normal bundle which will be defined

shortly.

The system (*) is obtained as in [2, p. 240]. If a denotes the second

fundamental form of the immersion, and if X = d/dx, Y = d/dy denote

the coordinate vector fields of an isothermal coordinate system, then

the Codazzi equations, [4, p. 25], in terms of the sections L=ct(X, X),

M = a(X, Y), and N = a( Y, Y) may be written as follows :

VyZ - VxM

VYM — VXN

where E(dx2-\-dy2) is the first fundamental form; and XE denotes the

derivative of E in the direction X. In order to give the above system

the desired form, we differentiate 2EH = L-\-N, the defining equation

for H and we obtain (YE)H= -EVrH+%(VYL+VYN). Using this

equality, the first Codazzi equation takes the following form:

VY((L — N)/2)—VxM= — EVYH=0, where VYH is zero because H is

parallel. With the substitution u = (L — N)/2 and v = M the above

equation is identical to the first equation of (*). Similarly, the second

equation of (*) is obtained.

For the proof of Theorem I, one considers the components Ui and

Vi of u and v respectively in the direction of H. Since H is parallel, the

YE
— (L + N) =(YE)R,

- — <£ + N) - - (XE)H,
LE
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system (*) also holds for the components Ux and »»,; i.e., Ux+ivx is

anti-holomorphic in terms of the isothermal parameters. Now we

use the maximum modulus theorem for anti-holomorphic functions

to show that Ux+ivx is identically zero. To achieve the latter, the

complex plane is used as an isothermal coordinate system for the

sphere minus a point. Since |mi+m>i| is bounded by 2kE where k is

an upper bound for the principal curvatures, and since the limit of

E as |x+¿y| tends to infinity is zero, we have Wi+Wi = 0. This in turn

implies that the principal curvatures in the iï-direction are both equal

to ||fz"|| =1. Now we consider the map I—H:S2—*Rn that sends a

point xES2 into the point I(x)—H(x)ERn- Since both principal

curvatures are equal to one, the derivative oí I — His identically zero;

and therefore, I —H is identically equal to a constant cERn- Thus,

I = c+H, i.e., I(S2) is a surface in the unit sphere with center cER-

In fact, I(S2) is a minimal surface in 5n_I because the mean curvature

vector H is perpendicular to Sn~l.

For the proof of Theorem II, the system (*) will be used again.

Since the components of u and v in the iî-direction are zero and H

is parallel, one can consider the system (*) to be a system of equations

for sections in the orthogonal complement to H in the normal bundle.

In the first step it will be shown that ||m||2 — \\v\\2 as well as (u, v) are

identically zero. The system (*) implies

VxVxM + VyVrM = VyVjrU — VxVyD = R(Y, X)v,

VjfVxv + VyVrv = — VyVx« + VxVyU = — R(Y, X)u,

where R(Y, X) denotes the curvature tensor of the normal bundle.

Applying the Laplace operator to ||w||2 —1|»||2 results in the following:

FA(||re||2 - ¡HI2) = 2(||Vx«||2 + \\vYu\\2 - \\vxv\\2 - \\vYv\\2)

+ 2((R(Y,X)v,u) + (R(Y,X)u,v))

= 0,

where the first parenthesis is zero because of (*), while the second

parenthesis is zero because (R(Y, X)u, v) is skew symmetric in u and

v. Again, we consider the isothermal coordinate system introduced

in the proof of Theorem I. Since both u and v tend to zero for large

|x+fy|, it follows from the maximum principle for harmonic func-

tions that ||w||2 — ||j;||2 = 0. In a like manner, (u, v) = 0 is proved.

The system (*) is further used to show that the sections u and v

are either identically zero or have isolated zeros only. Let p be a point

where both u and v vanish. For convenience, we introduce a canonical

coordinate system with center p for the normal bundle; i.e., we iden-
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tify the restriction of the normal bundle to a neighborhood U with

the Cartesian product UXR2 by means of a cross section obtained

by parallel translation of a frame over p along geodesic rays. Finally,

we consider the nonvanishing terms uk and vk of lowest order in the

Taylor formula for u and v respectively. The system (*) implies that

uk-\-ivk is anti-holomorphic. Therefore, the sections u and v have

isolated zeros only. The alternative u=v = 0 will not be considered

again since in this case the proof is completed.

With these preparations out of the way, we compute the curvature

(R(X, Y)u, v) of the normal bundle of the minimal 2-sphere in S*.

By the formulas obtained in §2.3 of [5] we have (R(X, Y)u, v)

= {[AU, Av]X, Y), where A" denotes the linear transformation asso-

ciated to the second fundamental form in the direction of u. If unit

vectors in the direction of u and v are used as a basis for the normal

bundle, we obtain

u. ¿.i = [/NI    ° \( °   MlYl
1   '   J   LU   -NlJ'VlHl    oJJ

/        0 2||*|||M|\

\-2||«||||»|| 0      /

Therefore, iR(X, Y)u, v)= -2\\u\\ \\v\\ = -2||m||2. It follows that the

curvature of the normal bundle is equal to + 2 u2/E, the sign depend-

ing on the orientation of u and v. The integral of this curvature over

the 2-sphere is equal to the Euler number of the normal bundle. This

number is zero because the normal bundle is assumed to be trivial.

Since the curvature is either zero in isolated points only, or is identi-

cally zero, it cannot change sign and therefore must be identically

zero. The immediate implication is that the minimal 2-sphere in S*

is in fact the standard geodesic S2.
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