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THE PROTECTIVE RESOLUTION OF
A COMPACT SPACE1

ANTHONY W. HAGER2

Abstract. A new proof is given of Gleason's Theorem that in

the category of compact Hausdorff spaces and continuous maps,

each space has an essentially unique (minimal) projective resolu-

tion.

The method is a simple one, to establish by Zorn's lemma that in

the family of irreducible pre-images of a given space there is a maxi-

mal member, and that this maximal member is projective. To accom-

plish the latter, it is convenient to use the criterion for projectivity in

(b) of Theorem 1 below. The short proof of this preliminary result

contains the principal points of contact between our proof of the

existence of projective resolutions and those of Gleason [G] and

Rainwater [R] ; this is discussed below.

After this note was submitted, B. Banaschewski pointed out to me

that the central idea had occurred to him some time ago, that a

sketch of the consequences had been published in 1967 [Bi] though

without much indication of the method, and that the details appear in

a long paper to be published shortly [B2]. Moreover, the context of

the latter is much more general than the present one. Remark 2, be-

low, contains a discussion of the similarities and differences in the two

approaches.

All spaces will be compact Hausdorff and all maps continuous. By a

projective in this category is meant a space P such that whenever

a'.P—^A and 7:B—»A (onto) then there is <p:P-*B with y<p=a. A

projective resolution of the space X is a pair (P, t) with P projective

and t:P—»X irreducible, i.e., mapping proper closed sets onto proper

subsets.

Theorem 1.  The following properties of a space P are equivalent.

(a) P is projective.
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(b) Each irreducible map onto P is a homeomorphism.

(c) Each mapping onto P is a retraction, i.e., a homeomorphism of a

subspace onto P.

Proof. Assume (a), and let/: Y—»P be irreducible. There is <p:P—>Y

with f<p = the identity on P. Because/ is irreducible, <p is onto. Thus/

is one-to-one, and a homeomorphism.

Assume (b), and let/: Y-^>P. By Zorn's lemma, there is a closed

subset 5 of Y which is minimal among closed subspaces which map

onto P. Thus/1 5 is irreducible, and a homeomorphism.

Assume (c), and let a:P-*A and y:B-»A. Let Y={(p, b):a(p)

= y(b)}, a closed subspace of P XB. Because 7 is onto, irp (projection

on P) maps Y onto P, and by (c) there is a subspace 5 of Y with irp \ S

a homeomorphism. Then 7rs(xp| S)-1:P—*B is the desired map.

Remark 1. This result, and its proof, are known, of course. In

[G], Gleason proves successively that projectives are extremally dis-

connected (each open set has open closure), that each extremally dis-

connected space has property (b) above, that spaces with property

(b) are projective. The last is not stated explicitly, but is clear from

the proof of [G, 2.5], a portion of which is identical to the proof

(b)=>(c)=>(a) above.

That (a)<=*(c) is noted explicitly by Mioduszewski and Rudolph

[MR, 2.1]. Their proof is that given above (though the triple

(Y, Tp\ Y, wb\ Y) is called a "uniformization" (or "pullback") of the

pair a, y, and its existence is asserted on category-theoretic grounds).

The "minimal subspace lemma" in (b)=*(c) above is used by both

Gleason and Rainwater.

We turn to projective resolutions. It is necessary to do a little pre-

liminary book-keeping in the vein of [K, p. 151 ].

Let X be a fixed space. In the family of pairs (A, a) where a:A—»X

is irreducible, define (A, a)^(B, y) if there is a map fay : A —*B with

yfay=a. Define (A, a) = (B, y) if (A, a)^(B, y) and (B, 7) l± (A, a).

Call (A, a) a maximal pair if (B, y) 2: (A, a) implies (B,y) = (A,a).

(i) (A,a) = (B,y) if and only if there is a homeomorphism A: A—*>B

withyh=a.

(ii) The maximal pairs are exactly the projective resolutions of X.

To prove these, we need the following.

Lemma. Lety:B—»X and one off, g:A^»B be irreducible. Ifyf=yg,

thenf = g.

Proof. If fia)¿¿gia) for an aEA, then choose disjoint open

neighborhoods U and V, oí fia) and g(a). If/ is irreducible, then
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/(/_1(í7)P\g_1(F)) contains an open set G (as is quickly checked).

Then y(B — G) =X, contradicting irreducibility of 7.

Observe that this Lemma implies the uniqueness of the connecting

maps fay defined above. This will be used in the proof of Gleason's

Theorem below.

To prove (i) and (ii), we use this immediate consequence of the

Lemma : If y :A^»X is irreducible and g : A -^A has yg =7, then g is the

identity on A. (This statement is implicit in [R, p. 735 ].)

To prove (i) : If h is such a homeomorphism, let/a? = h and/7a =h~1.

Conversely, if (A, a) = (B, y), then by the Lemma, fayfya and fyafay

are the identities on A and B, respectively, so fay=f~al and we set

h "fay.
To prove (ii) : If (P, r) is a projective resolution, then given (B, 7),

projectivity of P yields (P, t)^(B, 7). So if to begin with, (B, 7)

è(P, t), (B, y) = (P, t) follows. Conversely, let (P, r) be a maximal

pair. We shall verify (b) of Theorem 1. Let g:A-»P be irreducible.

Let a = rg. Clearly, a is irreducible and (.¡4, a) = (P, r). By maximal-

ly, (A, a) = (P, r); so by (i) there is a homeomorphism h:P~»A with

ah =r. Evidently, a(hg) =a, so by the Lemma, hg is the identity on A.

Then g = h-1 is a homeomorphism, as desired.

Theorem 2 (Gleason). Each space has a projective resolution. If

(P, t) and (P', t')' are projective resolutions of the same space, then

there is a homeomorphism h'.P^P' withr'h=T.

Proof. For the uniqueness: if (P, r) and (Pr, t') are projective

resolutions of X, then projectivity of P implies (P, r) ^ (P', r')> and

likewise, (P'f t')^(P, t); so (P, t) = (P', r'), and (i) yields the de-

sired homeomorphism.

For the existence, we shall find a "maximal pair" and apply (ii).

Let D be discrete X, and ßD the Stone-Cech compactification. Let

(P be the set of pairs iA, a) for which A is a quotient of ßD—an actual

set of equivalence classes in ßD. We claim that:

(*) given a pair (B, 7), there is (A, a)E<P with (A, a) = (B, y).

To see this, observe that ßD is projective—this is trivial to verify.

So, with v:ßD~»X the extension of the identity on X over ßD, there

is <p'.ßD—*B with y<p=v. One checks that <p is onto, and the desired

member of (P is obvious.

Now, (P together with 2: is a partially ordered set (according to the

definition in [K] : â is a transitive relation). We shall show that (P has

a maximal member. Using (*) such a maximal member is a "maximal

pair."

Let 6 be a chain in (P. Construct an inverse system by equipping
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the family {A:{A, a)E&} with the maps/a7:^4—>F with yfay=a,

when (^4, a)^(B, 7) in G. This is possible because the connect-

ing maps are unique. Let I be the inverse limit (the subset of

UM '-.(A, a)E&} of points ipu,«)) such that when (A, a)^(B,y)
then fay(p(A,a)) ^PiB.i))- Define t:F-»X by picking (A, a)E&, and

letting t.=airA, where tta is the projection: I-*A. By definition of the

inverse limit, air a =77rB for any other (B, 7) GC, and t is well-defined.

We shall show that 1 is irreducible. Then, the equation i=a7r,i shows

that (/, i) è (A, a). Using (*), choose (/', t') in <p with (I', 1') m (1,1),

Evidently, (I', 1') is the required upper bound for C. So, let F be a

proper closed subset of I. We may as well assume that F = I — G where

G is basic, of the form ir\(T(A\.ai)(Gx)C\ ■ ■ ■ ̂ ^"¿^,(0), |where

Gi is open in A,-. Since 6 is a chain, {(A,-, a¡) }"=1 has a maximum, say

(A, a), and using the definition of the inverse limit, G collapses to

ir\ir~¿At0Cl(H) for a suitable open HE A. Then,

l(F) = awA(F) = arA(I - G) = a(A - H).

Because a is irreducible, a(A —H)^I. So 1 is irreducible, chains in Ö*

are upper bounded, and Zorn's lemma gives a maximal member (P, r)

of (P.

Remark 2. In [B2], Banaschewski considers a category together

with a class of its morphisms—call the class 911—which together

satisfy five axioms, defines 3TC-projectivity and 9H-projective resolu-

tion in the category, and proves, by what is essentially the same

method as is used here, that the 9R-projective resolution exists for

each object which satisfies a pair of conditions concerning its "essen-

tial covers"—bere these are the irreducible pre-images. This pair of

conditions is used to the same effect as we have used ßD in the proof of

Theorem 2, namely to guarantee an appropriate set in which to use

Zorn's lemma. One of Banaschewski's axioms asserts that well-ordered

inverse systems have upper bounds; using Zorn's lemma, he chooses a

maximal inverse system "starting at the given object"; the stipulated

upper bound is shown to be projective via [B2, Proposition l]—quite

the same as our Theorem 1, but more general. The proof of [B2,

Proposition l] also is much the same as the proof of Theorem 1, re-

quiring the existence of pullbacks, which is another of the axioms.

Thus, at this point in the development, Banaschewski does not use

the "minimal subspace lemma" referred to in Remark 1, but needs it

later in verifying that certain topological categories satisfy the axioms.

The actual applications of [B2, Proposition l] and our Theorem 1

differ a bit in detail. Ours proceeds through (ii) above, and hence

through the Lemma used in the proof of (ii). This Lemma asserts what



266 A. W. HAGER [April

Banaschewski calls the rigidity of the projective resolution, an idea

which he discusses much later.

Remark 3. There are other constructions of the projective resolu-

tion besides those due to Gleason and Rainwater. Among the more-

or-less direct ones, see [Pi] (and [P2]), [i] (and [IF]), and [W]. Less

direct constructions appear in [FGL] and [S].

Projectivity in other topological categories is treated in [B2], [F],

[MR], and [St] (as well as [G]).

The papers [B2], [IF] and [P3] contain excellent bibliographies on

the general subject.
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