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A CHARACTERIZATION OF PUNCTURED
OPEN 3-CELLS

O. L. COSTICH, P. H. DOYLE AND D. E. GALEWSKI

Abstract. A proof is given using standard methods of the

topology of three-dimensional manifolds of the following charac-

terization of punctured cubes: A connected, open 3-manifold M is

topological E3 with k points removed if and only if every polyhedral

simple closed curve in M lies in a topological cube in M and the

rank of vi(M) is k. An application is given.

1. Introduction. Bing has proved [l, Theorem l] that a compact,

connected 3-manifold M is topologically S3 if each simple closed

curve in M lies in a topological cube in M. He proceeds to show [l,

Theorem 2] that a bounded, connected, open subset of F3 is topo-

logically E3 if the boundary of U is connected and each polyhedral

simple closed curve in t/lies in a topological cube in U. We propose to

improve the latter result so that it more closely resembles Bing's

characterization of S3.

Definition. A manifold M will be called an open manifold if M is

noncompact and has empty boundary.

Theorem 1. A connected, open 3-manifold M is topologically E3 if

and only if every polyhedral simple closed curve in M lies in a topo-

logical cube in M and Wi(M) is trivial.

Considering this theorem as the initial step in an induction proof

produces

Theorem 2. A connected, open 3-manifold M is topologically E3

with k points removed (a punctured cube) if and only if every polyhedral

simple closed curve in M lies in a topological cube in M and the rank of

iTi(M) is k.

Another application of Theorem 1 results in

Theorem 3. A connected, open, irreducible 3-manifold M is topo-

logically E3 if each polyhedral simple closed curve in M lies in a homo-

logically trivial complex in M.

2. Proofs of the theorems. Recall from [l] that if M is a connected
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3-manifold in which each polyhedral simple closed curve J lies in a

topological cube in M, then

(a) J lies interior to a polyhedral cube in M,

(b) each polyhedral finite graph in M lies interior to a polyhedral

cube in M,

(c) each compact subset of the 2-skeleton of any triangulation of

M lies interior to a punctured cube (a cube with finitely many points

removed).

(c) is not explicitly stated but is proved in the course of proving

Lemma 4 in [l].

The proof of our Theorem 1 relies on

Lemma 1. If M is an open connected 3-manifold in which each poly-

hedral simple closed curve lies in a topological cube then every compact

set in M lies interior to a polyhedral punctured cube in M.

Proof. Let C be compact in M. Then C lies in a compact, con-

nected, simplicial neighborhood L in M. Choose a regular neighbor-

hood N of L in M. Since A7' is a compact, connected 3-manifold with

boundary, N has a 2-dimensional spine X. Now X lies interior to a

polyhedral, punctured cube in M, and because N collapses to X, N

also lies interior to a polyhedral punctured cube in M. But AOC

The following definition and theorem are due to McMillan [3].

Definition. A 3-manifold M is a IF-space if M is open, contracti-

ble, and every compact set in M has a neighborhood which embeds in

E3.

Theorem. Let M be a W-space. Then M = U¡™ x C¿ where each Ci is a

cube with handles and C.C Int C,-+i.

Proof of Theorem 1. First, because iri(M) and ir2(M) are trivial,

ir3(M) ^H3(M) = 0 because M is noncompact. Thus M is contracti-

ble, and, by Lemma 1, every compact set in M has a neighborhood

which embeds in E3. Therefore, M is a IF-space and so must be the

monotone union U," i d of polyhedral cubes with handles. Next we

will prove that each compact set K in M lies interior to a polyhedral

cube in M. Because K is compact, K lies interior to some Ci. Now C,-

collapses to a polyhedral finite graph F,-, and since such graphs lie

interior to polyhedral cubes in M, d and hence K lie interior to a

polyhedral cube in M. It follows that M is the monotone union of 3-

cells, which, according to Brown [2], means that M is topologically

E3.

The proofs of Theorems 2 and 3 use the following
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Lemma 2. If M is a l-connected 3-manifold with dM—0 and 2 m a

2-sphere in M, then 2 separates M —2 into exactly two components.

Proof. Hc is Alexander-Spanier cohomology with compact sup-

port. Now Q = irx(M)~Hx(M)^H2c(M) by Poincaré duality so

0->H?(Z)j^H!(M-I,)->H%(M)^0 is exact. But i#(2)«Z and

HUM) «ZsoZeZ«H?(ikf-S)«H'„(14-2).
Our last lemma is

Lemma 3. Let M be a connected, open 3-manifold in which every

polyhedral simple closed curve lies in a topological cube, and let 'S, be a

polyhedral 2-sphere in M such that M—2= U^JV where U and V are

disjoint, open, connected sets.

Then the open manifold M\ obtained by attaching a ball D3 to the

closure of U along 2 also has the property that every polyhedral simple

closed curve in Mx lies in a topological cube in Mx-

Proof. Let 5 be a polyhedral simple closed curve in Mx- Since

(SC\ £/) W2 is 2-dimensional, it lies interior to a polyhedral punctured

cube Cx in M. By Lemma 2, 2 separates Ci into components UC\Cx

and VC\Ci, each of which is a punctured cube. To see this, repair the

punctures in Cx and split the resulting cube along 2 and then puncture

each component as Cx was punctured. Now attach (t/P\Ci)W2 to the

ball D3 along 2 to obtain a punctured cube in Mx which contains 5.

Thus 5 lies in a cube in Mx-

Proof of Theorem 2. We proceed by induction on the rank of

ir2(M)=k. For k = 0, the orientability of M guarantees that ir2(M)

^Hi(M) is torsion-free so that ití(M) = 0.

If k>0, the Whitehead sphere theorem [4] allows us to find a

polyhedral 2-sphere 2 in M which represents a generator of iti(M).

By Lemma 2, Af — 2 is the union of two components, i/and V. Since

M is l-connected, so are U and V. As a consequence, ití(M) ¡^Hí(M),

ití(U)~Hí(U), and v2(V) ~H2(V). From the Mayer-Vietoris se-

quence of the pair (U, V), the exactness of the sequence 0—>Hi(X)

-->H2(U)®H2(V)-*Hi(M)->0 results. Thus if rank [ir2(U)]=n and

rank [7r2(F)] =m, then n+m = k + l. By Lemma 3, attaching balls to

U and V along 2 we obtain two open 3-manifolds satisfying the condi-

tions of the induction hypothesis. Thus they are E3 with, respectively,

n — 1 and m — 1 points removed. By detaching the balls and recon-

structing M we clearly get E3 with (n — \) + (m — \) + \=k points

removed.

Proof of Theorem 3. It suffices to prove that each polyhedral



298 O. L. COSTICH, P. H. DOYLE AND D. E. GALEWSKI

simple closed curve in M lies in a topological cube in M. To this end,

let 5 be such a curve in M. Choose a homologically trivial complex K

in M containing 5 and let A7 be a regular neighborhood of K in M.

Now N is a compact 3-manifold with boundary dN and N has the

homotopy type of K. Thus 0 = H1(N; Z2)~H2(N, dN; Z2) by Poin-

caré duality and so from the exact sequence for the pair (N, dN),

-> HAN, dN; Z2) -* HAdN; Z2) -» Ih(N; Z2) -* • ■ • ,

we get Hi(dN; Z2)=0. It follows that dN is a 2-sphere, so must

bound a 3-cell. Because the closure of each component of M — N is

noncompact, N must be that 3-cell. Then S lies in a cube.
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