A CHARACTERIZATION OF PUNCTURED OPEN 3-CELLS

O. L. COSTICH, P. H. DOYLE AND D. E. GALEWSKI

ABSTRACT. A proof is given using standard methods of the topology of three-dimensional manifolds of the following characterization of punctured cubes: A connected, open 3-manifold M is topological E^3 with k points removed if and only if every polyhedral simple closed curve in M lies in a topological cube in M and the rank of $\pi_2(M)$ is k. An application is given.

1. Introduction. Bing has proved [1, Theorem 1] that a compact, connected 3-manifold M is topologically S^3 if each simple closed curve in M lies in a topological cube in M. He proceeds to show [1, Theorem 2] that a bounded, connected, open subset of E^3 is topologically E^3 if the boundary of U is connected and each polyhedral simple closed curve in U lies in a topological cube in U. We propose to improve the latter result so that it more closely resembles Bing's characterization of S^3 .

DEFINITION. A manifold M will be called an open manifold if M is noncompact and has empty boundary.

THEOREM 1. A connected, open 3-manifold M is topologically E^3 if and only if every polyhedral simple closed curve in M lies in a topological cube in M and $\pi_2(M)$ is trivial.

Considering this theorem as the initial step in an induction proof produces

THEOREM 2. A connected, open 3-manifold M is topologically E^3 with k points removed (a punctured cube) if and only if every polyhedral simple closed curve in M lies in a topological cube in M and the rank of $\pi_2(M)$ is k.

Another application of Theorem 1 results in

THEOREM 3. A connected, open, irreducible 3-manifold M is topologically E^3 if each polyhedral simple closed curve in M lies in a homologically trivial complex in M.

2. Proofs of the theorems. Recall from [1] that if M is a connected

Received by the editors June 29, 1970.

AMS 1969 subject classifications. Primary 5478, 5701.

Key words and phrases. Three-dimensional manifold, punctured cube, irreducible manifold.

3-manifold in which each polyhedral simple closed curve J lies in a topological cube in M, then

- (a) J lies interior to a polyhedral cube in M,
- (b) each polyhedral finite graph in M lies interior to a polyhedral cube in M,
- (c) each compact subset of the 2-skeleton of any triangulation of M lies interior to a punctured cube (a cube with finitely many points removed).
- (c) is not explicitly stated but is proved in the course of proving Lemma 4 in [1].

The proof of our Theorem 1 relies on

LEMMA 1. If M is an open connected 3-manifold in which each polyhedral simple closed curve lies in a topological cube then every compact set in M lies interior to a polyhedral punctured cube in M.

PROOF. Let C be compact in M. Then C lies in a compact, connected, simplicial neighborhood L in M. Choose a regular neighborhood N of L in M. Since N is a compact, connected 3-manifold with boundary, N has a 2-dimensional spine X. Now X lies interior to a polyhedral, punctured cube in M, and because N collapses to X, N also lies interior to a polyhedral punctured cube in M. But $N \supset C$.

The following definition and theorem are due to McMillan [3].

DEFINITION. A 3-manifold M is a W-space if M is open, contractible, and every compact set in M has a neighborhood which embeds in \mathbb{R}^3 .

THEOREM. Let M be a W-space. Then $M = \bigcup_{i=1}^{\infty} C_i$ where each C_i is a cube with handles and $C_i \subset \text{Int } C_{i+1}$.

PROOF OF THEOREM 1. First, because $\pi_1(M)$ and $\pi_2(M)$ are trivial, $\pi_3(M) \approx H_3(M) = 0$ because M is noncompact. Thus M is contractible, and, by Lemma 1, every compact set in M has a neighborhood which embeds in E^3 . Therefore, M is a W-space and so must be the monotone union $\bigcup_{i=1}^{\infty} C_i$ of polyhedral cubes with handles. Next we will prove that each compact set K in M lies interior to a polyhedral cube in M. Because K is compact, K lies interior to some C_i . Now C_i collapses to a polyhedral finite graph Y_i , and since such graphs lie interior to polyhedral cubes in M, C_i and hence K lie interior to a polyhedral cube in M. It follows that M is the monotone union of 3-cells, which, according to Brown [2], means that M is topologically E^3 .

The proofs of Theorems 2 and 3 use the following

LEMMA 2. If M is a 1-connected 3-manifold with $\partial M = \emptyset$ and Σ is a 2-sphere in M, then Σ separates $M - \Sigma$ into exactly two components.

PROOF. H_c^* is Alexander-Spanier cohomology with compact support. Now $0 = \pi_1(M) \approx H_1(M) \approx H_c^2(M)$ by Poincaré duality so $0 \to H_c^2(\Sigma) \xrightarrow{\delta} H_c^3(M - \Sigma) \to H_c^3(M) \to 0$ is exact. But $H_c^2(\Sigma) \approx Z$ and $H_c^3(M) \approx Z$ so $Z \oplus Z \approx H_c^3(M - \Sigma) \approx H_0(M - \Sigma)$.

Our last lemma is

LEMMA 3. Let M be a connected, open 3-manifold in which every polyhedral simple closed curve lies in a topological cube, and let Σ be a polyhedral 2-sphere in M such that $M-\Sigma=U\cup V$ where U and V are disjoint, open, connected sets.

Then the open manifold M_1 obtained by attaching a ball D^3 to the closure of U along Σ also has the property that every polyhedral simple closed curve in M_1 lies in a topological cube in M_1 .

PROOF. Let S be a polyhedral simple closed curve in M_1 . Since $(S \cap U) \cup \Sigma$ is 2-dimensional, it lies interior to a polyhedral punctured cube C_1 in M. By Lemma 2, Σ separates C_1 into components $U \cap C_1$ and $V \cap C_1$, each of which is a punctured cube. To see this, repair the punctures in C_1 and split the resulting cube along Σ and then puncture each component as C_1 was punctured. Now attach $(U \cap C_1) \cup \Sigma$ to the ball D^3 along Σ to obtain a punctured cube in M_1 which contains S. Thus S lies in a cube in M_1 .

PROOF OF THEOREM 2. We proceed by induction on the rank of $\pi_2(M) = k$. For k = 0, the orientability of M guarantees that $\pi_2(M) \approx H_2(M)$ is torsion-free so that $\pi_2(M) = 0$.

If k>0, the Whitehead sphere theorem [4] allows us to find a polyhedral 2-sphere Σ in M which represents a generator of $\pi_2(M)$. By Lemma 2, $M-\Sigma$ is the union of two components, U and V. Since M is 1-connected, so are U and V. As a consequence, $\pi_2(M)\approx H_2(M)$, $\pi_2(U)\approx H_2(U)$, and $\pi_2(V)\approx H_2(V)$. From the Mayer-Vietoris sequence of the pair $(\overline{U}, \overline{V})$, the exactness of the sequence $0\to H_2(\Sigma)\to H_2(\overline{U})\oplus H_2(\overline{V})\to H_2(M)\to 0$ results. Thus if rank $[\pi_2(U)]=n$ and rank $[\pi_2(V)]=m$, then n+m=k+1. By Lemma 3, attaching balls to \overline{U} and \overline{V} along Σ we obtain two open 3-manifolds satisfying the conditions of the induction hypothesis. Thus they are E^3 with, respectively, n-1 and m-1 points removed. By detaching the balls and reconstructing M we clearly get E^3 with (n-1)+(m-1)+1=k points removed.

PROOF OF THEOREM 3. It suffices to prove that each polyhedral

simple closed curve in M lies in a topological cube in M. To this end, let S be such a curve in M. Choose a homologically trivial complex K in M containing S and let N be a regular neighborhood of K in M. Now N is a compact 3-manifold with boundary ∂N and N has the homotopy type of K. Thus $0 = H^1(N; Z_2) \approx H_2(N, \partial N; Z_2)$ by Poincaré duality and so from the exact sequence for the pair $(N, \partial N)$,

$$\cdots \rightarrow H_2(N, \partial N; Z_2) \rightarrow H_1(\partial N; Z_2) \rightarrow H_1(N; Z_2) \rightarrow \cdots$$

we get $H_1(\partial N; Z_2) = 0$. It follows that ∂N is a 2-sphere, so must bound a 3-cell. Because the closure of each component of M-N is noncompact, N must be that 3-cell. Then S lies in a cube.

REFERENCES

- 1. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S^3 , Ann. of Math. (2) 68 (1958), 17-37. MR 20 #1973.
- 2. M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814. MR 23 #A4129.
- 3. D. R. McMillan, Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510-514. MR 24 #A1132.
- **4.** J. H. C. Whitehead, On 2-spheres in 3-manifolds, Bull. Amer. Math. Soc. **64** (1958), 161-166. MR **21** #2241.

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

University of Iowa, Iowa City, Iowa 52240