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A CHARACTERIZATION OF PUNCTURED
OPEN 3-CELLS

O. L. COSTICH, P. H. DOYLE AND D. E. GALEWSKI

ABSTRACT. A proof is given using standard methods of the
topology of three-dimensional manifolds of the following charac-
terization of punctured cubes: A connected, open 3-manifold M is
topological E? with % points removed if and only if every polyhedral
simple closed curve in M lies in a topological cube in M and the
rank of m2() is k. An application is given.

1. Introduction. Bing has proved [1, Theorem 1] that a compact,
connected 3-manifold M is topologically S$* if each simple closed
curve in M lies in a topological cube in M. He proceeds to show [1,
Theorem 2] that a bounded, connected, open subset of E3 is topo-
logically E? if the boundary of U is connected and each polyhedral
simple closed curve in U lies in a topological cube in U. We propose to
improve the latter result so that it more closely resembles Bing's
characterization of S2.

DEFINITION. A manifold M will be called an open manifold if M is
noncompact and has empty boundary.

THEOREM 1. A connected, open 3-manifold M is topologically E3 if
and only if every polyhedral simple closed curve in M lies in a topo-
logical cube in M and wo(M) 1is trivial.

Considering this theorem as the initial step in an induction proof
produces

THEOREM 2. A connecled, open 3-manifold M is topologically E?
with k points removed (a punctured cube) if and only if every polyhedral
simple closed curve in M lies in a topological cube in M and the rank of
wo(M) is k.

Another application of Theorem 1 results in

THEOREM 3. A connected, open, irreducible 3-manifold M is topo-
logically E3 if each polyhedral simple closed curve in M lies in a homo-
logically trivial complex in M.

2. Proofs of the theorems. Recall from [1] that if M is a connected
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3-manifold in which each polyhedral simple closed curve J lies in a
topological cube in M, then

(a) Jliesinterior to a polyhedral cube in M,

(b) each polyhedral finite graph in M lies interior to a polyhedral
cube in M,

(c) each compact subset of the 2-skeleton of any triangulation of
M lies interior to a punctured cube (a cube with finitely many points
removed).

(c) is not explicitly stated but is proved in the course of proving
Lemma4in [1].

The proof of our Theorem 1 relies on

LeMMA 1. If M is an open connected 3-manifold in which each poly-
hedral simple closed curve lies in a topological cube then every compact
set in M lies interior to a polyhedral punctured cube in M.

Proor. Let C be compact in M. Then C lies in a compact, con-
nected, simplicial neighborhood L in M. Choose a regular neighbor-
hood N of L in M. Since N is a compact, connected 3-manifold with
boundary, N has a 2-dimensional spine X. Now X lies interior to a
polyhedral, punctured cube in M, and because N collapses to X, N
also lies interior to a polyhedral punctured cube in M. But NDOC.

The following definition and theorem are due to McMillan [3].

DEFINITION. A 3-manifold M is a W-space if M is open, contracti-
ble, and every compact set in M has a neighborhood which embeds in
E3,

THEOREM. Let M be a W-space. Then M =U;2, C; where each C; is a
cube with handles and C;C Int Cyy;.

ProoF or THEOREM 1. First, because m (M) and (M) are trivial,
w3(M) = H3;(M) =0 because M is noncompact. Thus M is contracti-
ble, and, by Lemma 1, every compact set in M has a neighborhood
which embeds in E3. Therefore, M is a W-space and so must be the
monotone union U;Z; C; of polyhedral cubes with handles. Next we
will prove that each compact set K in M lies interior to a polyhedral
cube in M. Because K is compact, K lies interior to some C;. Now C;
collapses to a polyhedral finite graph Y;, and since such graphs lie
interior to polyhedral cubes in M, C; and hence K lie interior to a
polyhedral cube in M. It follows that M is the monotone union of 3-
cells, which, according to Brown [2], means that M is topologically
E3,

The proofs of Theorems 2 and 3 use the following
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LeEMMA 2. If M is a 1-connected 3-manifold withdM = & and 2 is a
2-sphere in M, then Z separates M —Z into exactly two components.

ProOF. H is Alexander-Spanier cohomology with compact sup-
port. Now O=m(M)~H(M)~H*(M) by Poincaré duality so
0—H(Z) S, HY (M —Z)—>H}(M)—0 is exact. But HZ(Z)~Z and
HXM)~Zs0o Z®Z~H(M—3)~Ho(M—3).

Our last lemma is

LemMMA 3. Let M be a connected, open 3-manifold in which every
polyhedral simple closed curve lies in a topological cube, and let Z be a
polyhedral 2-sphere in M such that M —2Z =U\JV where U and V are
disjoint, open, connected sets.

Then the open manifold M, obtained by atlaching a ball D3 to the
closure of U along Z also has the property that every polyhedral simple
closed curve in M, lies in a topological cube in M.

Proor. Let S be a polyhedral simple closed curve in M;. Since
(SNU)UZ is 2-dimensional, it lies interior to a polyhedral punctured
cube () in M. By Lemma 2, Z separates C; into components UNC;
and VN (,, each of which is a punctured cube. To see this, repair the
punctures in C; and split the resulting cube along Z and then puncture
each component as C; was punctured. Now attach (UNCy)\JZ to the
ball D? along Z to obtain a punctured cube in M; which contains S.
Thus Slies in a cube in M.

Proor oF THEOREM 2. We proceed by induction on the rank of
m(M)=~k. For k=0, the orientability of M guarantees that m(M)
=~ H,(M) is torsion-free so that m(M) = 0.

If £>0, the Whitehead sphere theorem [4] allows us to find a
polyhedral 2-sphere £ in M which represents a generator of m(M).
By Lemma 2, M —Z is the union of two components, U and V. Since
M is 1-connected, so are U and V. As a consequence, m(M) =~ H,(M),
m(U) = Hx(U), and m(V)=Hy(V). From the Mayer-Vietoris se-
quence of the pair (T, V), the exactness of the sequence 0—H(Z)
—H,(T) ® Hy(V)—H,(M)—0 results. Thus if rank [m(U)]=n and
rank [m3(V)]=m, then n+m =k+1. By Lemma 3, attaching balls to
T and 7 along = we obtain two open 3-manifolds satisfying the condi-
tions of the induction hypothesis. Thus they are E? with, respectively,
n—1 and m —1 points removed. By detaching the balls and recon-
structing M we clearly get E* with (n—1)4+(m—1)+1==Fk points
removed.

Proor orF THEOREM 3. It suffices to prove that each polyhedral
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simple closed curve in M lies in a topological cube in M. To this end,
let .S be such a curve in M. Choose a homologically trivial complex K
in M containing .S and let N be a regular neighborhood of K in M.
Now N is a compact 3-manifold with boundary N and N has the
homotopy type of K. Thus 0=H'(N; Z;) ~ H:(N, dN; Z,) by Poin-
caré duality and so from the exact sequence for the pair (N, dN),

+— Hy(N,dN; Zy) = Hi(dN; Zs) > Hy(N; Z5) — - - -,

we get H1(ON; Z.) =0. It follows that AN is a 2-sphere, so must
bound a 3-cell. Because the closure of each component of M — N is
noncompact, N must be that 3-cell. Then Sliesin a cube.
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