NO TOPOLOGIES CHARACTERIZE DIFFERENTIABILITY AS CONTINUITY

ROBERT GEROCH, 1 ERWIN KRONHEIMER AND GEORGE MCCARTY2

ABSTRACT. Do there exist topologies $\mathfrak U$ and $\mathfrak V$ for the set R of real numbers such that a function f from R to R is smooth in some specified sense (e.g., differentiable, C^n , or C^∞) with respect to the usual structure of the real line if and only if f is continuous from $\mathfrak U$ to $\mathfrak V$? We show that the answer is no.

First assume $\mathfrak{A} = \mathfrak{V}$: we establish that if, with respect to a single given topology on R, (a) all functions of the form $x \sim px + q$ $(p, q \in R)$ are continuous, and (b) some nonzero function h from R to R which vanishes on the negative numbers is continuous, then the function $h:x \sim |x|$ is also continuous.

To prove this we may evidently assume the given topology is not indiscrete. Consequently we can, using (a), find an open set U to include any chosen nonzero w and to exclude 0. We choose w in h[R]: then $h^{-1}[U]$ is a nonvoid open set containing only nonnegative numbers. Whenever $x \neq 0$, therefore, |x| has, by (a), a neighborhood consisting of nonnegative numbers. For any such neighborhood N, however, $k^{-1}[N] = N \cup (-N)$, which, by (a), is a neighborhood of x. It follows that k is continuous at x. To prove that k is continuous at k note that if k is a neighborhood of k so is k is a neighborhood of k and that $k^{-1}[M^*] = M^*$.

The following lemma now shows that there was no loss of generality in the assumption that $\mathfrak{A} = \mathfrak{V}$.

LEMMA. Let X be a set, and let $C(\mathfrak{U}, \mathfrak{V})$ —defined whenever $\mathfrak{U}, \mathfrak{V}$ are topologies on X—denote the class of $(\mathfrak{U}, \mathfrak{V})$ -continuous maps. Suppose $C(\mathfrak{U}, \mathfrak{V})$ is a class F which (i) is closed under composition and (ii) includes the identity map. Then $F = C(\mathfrak{I}, \mathfrak{I})$ for some \mathfrak{I} .

PROOF. Let S be the topology generated on X by the collection

$$\{f^{-1}[V]: f \in F, V \in \mathfrak{V}\}.$$

Then $F \subset C(S, \mathcal{V}) \subset C(\mathcal{U}, \mathcal{V})$; hence $F = C(S, \mathcal{V})$. Let 3 be the topology

Received by the editors August 8, 1969.

AMS 1969 subject classifications. Primary 5460; Secondary 2641.

Key words and phrases. Differentiability.

¹ Present address: Department of Physics, University of Texas, Austin. NSF post-doctoral fellow.

² Research supported by NSF Grant GP-7913.

$$\{T: f \in F \Rightarrow f^{-1}[T] \in S\}.$$

Then $F \subset C(S, \mathfrak{I}) \subset C(S, \mathfrak{V})$; hence $F = C(S, \mathfrak{I})$. By (i), each generator of S belongs to \mathfrak{I} : consequently $S \subset \mathfrak{I}$. By (ii), therefore, $S = \mathfrak{I}$.

The following question remains open: Does there exist a topology on R with respect to which a function is continuous if and only if it is analytic?

BIRKBECK COLLEGE, LONDON, ENGLAND