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NO TOPOLOGIES CHARACTERIZE DIFFERENTIABILITY
AS CONTINUITY

ROBERT GEROCH,1 ERWIN KRONHEIMER AND GEORGE MCCARTY2

Abstract. Do there exist topologies 11 and X) for the set R of

real numbers such that a function / from R to R is smooth in some

specified sense (e.g., differentiable, C", or C) with respect to the

usual structure of the real line if and only if / is continuous from

11 toTJ? We show that the answer is no.

First assume 11 = V: we establish that if, with respect to a single

given topology on R, (a) all functions of the form x^~px+q (p, qER)

are continuous, and (b) some nonzero function h from F to F which

vanishes on the negative numbers is continuous, then the function

¿ : ¡Cjv»-| x | is also continuous.

To prove this we may evidently assume the given topology is not

indiscrete. Consequently we can, using (a), find an open set U to in-

clude any chosen nonzero w and to exclude 0. We choose w in A[i2]:

then fe_1[c7] is a nonvoid open set containing only nonnegative num-

bers. Whenever x^O, therefore, |x| has, by (a), a neighborhood con-

sisting of nonnegative numbers. For any such neighborhood N,

however, ¿"'[A7] =N^J (-N), which, by (a), is a neighborhood of x.

It follows that k is continuous at x. To prove that k is continuous at 0,

note that if M is a neighborhood of 0 so is M* = M(~\ ( — M), and that

k~1[M*]=M*.

The following lemma now shows that there was no loss of generality

in the assumption that 11 = V.

Lemma. Let X be a set, and let C(1l, V)—defined whenever 11, V are

topologies on X—denote the class of (11, V)-continuous maps. Suppose

C(ll, V) is a class F which (i) is closed under composition and (ii)

includes the identity map. Then F= C(3, 3) for some 3.

Proof. Let S be the topology generated on X by the collection

{MvhfEF, VEV}.

Then FCC(S, V)CC(c\l, V) ; hence F= C(S, V). Let 3 be the topology
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¡r:/e^/-'[r]6s).

Then FC C(S, 3) C C(§, V) ; hence F = C(S, 3). By (i), each generator of

S belongs to 3: consequently SC3. By (ii), therefore, S = 3.

The following question remains open: Does there exist a topology

on R with respect to which a function is continuous if and only if it is

analytic?
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